学年

教科

質問の種類

数学 大学生・専門学校生・社会人

すみません、わかる方助けて欲しいです。

下記の問題について解答しなさい。 1.10 進数で表現された自然数を9で割ったときの余りを調べる方法として、各桁の数字 を全て加えた数の余りを調べればよいことが知られている。 例えば、 数 695973であるとき、 6+9+5+9+7+3=39 であり、 39 を9で割った余りは3であるので 6959739で割った余 りは3である。 この方法が成り立つのはなぜか、 講義中に説明した合同式の性質を用いて 一般的に説明しなさい (数695973 の場合についてのみ説明するのではありません)。 (Hint. 10 進数で表記された数の各桁は10のべき数の位である。 例えば、数123は1 × 102 + 2 × 101 + 3 の意味である。 また、 10=1 (mod9) に注意する) 2. 数 9798 と 4278 の最大公約数をユークリッドの互除法を用いて求めなさい。 途中の計 算式も示すこと。 3. 一次合同式31x=5 (mod247) を解きなさい。 4. 下記の連立一次合同式を解きなさい。 x=1(mod3) x=2(mod7) x=3 (mod11) 5. 法p = 11 であるとき、 加算と乗算の演算表 (教科書 p.18 の表 2.2のような表) を作成 しなさい。 また、 各非零元の乗法における逆元を示しなさい。 6. 法q=512における既約剰余類の要素の数を求めなさい。 7. 以下の値を求めなさい (Hint. オイラーの定理を利用する)。 13322 (mod 600)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の[4-1](1)についてですが示すまでの理解はできるんですが三角不等式を用いて示すっていうのがよく分からないです💦 ここはどういう感じの証明を書けばいいのでしょうか? また、他の問題もどうやって解くのか教えてほしいです! よろしくお願いします🙇‍♂️

[4-1] {an}neN>{bn}neN CR, a,be R, と仮定し,0に対し、 をみたす Ne, Ne∈Nが与えられているとする. このとき,次を示せ . (1) |6| ≤ 1 + |6| for all n∈Nf.. (Hint. bn= (bm-b) +6 に対して三角不等式を用いよ) THE (2)>0 に対し, 61 (E) = 1+ |a|+|b| と、 Jan - all ≤efor alline N, 16-6 ≤e for all neNA. (3) (2) において ana, bnb asn→∞ (従って, |0| ≤1+|6|,|0-al≤e1 (c), 10-bel (e) for all n ∈NN.. (従って, anbabasn→∞ が成り立つ.) (3) (2) において, 1 on lanbn-abl≤lan-all bnl + |al|bn-b|≤e for all ne NN. E = jare. >0,Ne=max{N1, Na(e), Na(e)} EN とおく [4-2] [41] において, {bn}neN CR\{0}, b ∈ R\{0} とするとき, ([4-1] の (前提の)記 号の下で)次を示せ . (1) Eo= = 10/11 > >0とおくと befor alline No. (Hint. b= (b-bm) +6m に対して三角不等式を用いよ.) (2)>0に対し,1 (€)=260,Ne=max { Neo, Na(e)}EN とおくと, 1 ≤ —, |b₁-b| ≤ €₁(e) for all n € N₁₂. NN・ |bn| E0 27/0 b Ibn-b) ≤ 1 | 12/23 - 12/10 = <e for all n E NN bn 16m-61 |b||b₂| asn→∞ が成り立つ) [bn] ≤ 1+|bl

回答募集中 回答数: 0
1/7