学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題、判別式だけでできないのはなんでですか??

Think 例題 35 無理関数のグラフと直線 **** 関数 y=√2x-1 ……………① のグラフと直線 y=x+k •••••• ② との共有 点の個数を調べよ. ただし, kは実数の定数とする. 考え方 まず,無理関数 y=√2x-1 のグラフをかく. 次に,k の変化に応じて, 直線を動かして考える. 直線を上から下に平行移動するとき, 次の2つに注意 すれば, 共有点の個数の変化がつかみやすくなる. ① 曲線 ①と直線 ②が接するときのkの値 y=√2x-1 ...固定 y=x+k 変動 第2章 34 ②] 直線 ②が曲線 ①の端点 (20) を通るときのん の値 つまり、 ①を境として共有点の個数が 0個 1個 2個 ②を境として共有点の個数が 2個→1個 y=v2x-1 とそれぞれ変化する. 解答 ①のグラフは右の図のように なる. y4 まず①②のグラフが接す るときのんの値を求める. ①②より, √2x-1=x+k 両辺を2乗すると, Ø 1 1 x 2x-1=(x+k)? より, ①のグラフと数本の適 当な ② のグラフをかく. y=/20 1/2(x-1)より。 ①のグラフは y=√2x のグラフを 2 x2+2(k-1)x+k+1= 0 x 軸方向に だけ平行 移動したもの この方程式の判別式をDとすると, 重解をもつから, D 1=(k-1)-(k+1)=-2k=0より, k=0 4 次に,直線 ②が点 (20) を通るときのkの値を求める。 10/12th より k=-1/12/ 0= |接する重解をもつ ⇔D=0 ②にx=12, y=0を 代入する. 以上より, ① ② のグラフの共有点の個数は, k>0 のとき, グラフで確認する. 0個 kの値の減少により, <-12, k=0 のとき, 1個 ②は下方に平行移動す る. 1/2sk<0 のとき 2個 Focus 共有点の個数はグラフが接する場合をまず考える 練習 35 関数 y= 2x+3 +3 のグラフと直線 y=ax +2 との共有点の個数を調べよ. ** ただし, αは実数の定数とする. p.994

未解決 回答数: 0
数学 大学生・専門学校生・社会人

数Iの三角形の面積についての質問です。 なぜ∠BACはsinだと分かるのですか? 分かる方いたら教えて欲しいです🙇‍♀️

c=2RsinC=24sin120° =2.4.3 =4√3 basin 15 (√6-√2).2.2 531 2 正弦定理から a b sin A sin B 2R よって a b=sin B.. sin A SU =sin 60°.. 2 (2)CD=AB=2であるから,三角形 CDB の面積Sは S=1125sin120°= 5/3 √√2 √√2 =√3-1 2 sin 45° よって,平行四辺形ABCD の面積は ST- √3 2 8- 2 1 √√2 =√3-√2=√6 1 a 1 2 R= 2 sin A 2 sin 45° =√2 41(1) 余弦定理から a2=62+c2-2bccos A 2S=5√3 別解 Aから辺BCに垂線 AH を下ろすと、 B=180°-120°=60°から AH=ABsin60°=2√3 よって,平行四辺形において, 底辺 BC に対する高さが AH であるから, 求め る面積は BCXAH=5√√3 =32+(√2)2-2・3・√2 cos 45° ar S44 (1) (15+21+13+19+20)= 88 =9+2-6√ √ =5 5 =17.6 a0 であるから a=√ =√5 (2) 余弦定理から cos B= c2+α²-b2_82+52-72 2ca 40 1 2.8.5 よって B=60° 答 (2)(45+38+52+54+73+27+25+42) 356 =44.5 8 2.8.5 (3) {2+9+6+(-9)+1 +(-5)+6+1 +2 + (− 42 (1) 2=25, 62+c2=25 から a2=b2+c2 ゆえに A=90° よって, ∠Aは直角である。 (2) a2=64,62+c2=61 から a²>b²+c² - 10 -=1 45 (1) データを小さい順に並べると 8, 14, 22, 48, 97 データの大きさは5であるから, 中央 3番目の値である。 ゆえに A > 90° よって, 中央値は 22 よって、 ∠Aは鈍角である。 43(1) A=180°-(B+C) =180°-(30°+105° から? =45° (2) データを小さい順に並べると 11, 20, 20, 38, 39, 50, データの大きさは7であるから, 4番目の値である。 よって、 三角形ABC の面積は よって、 中央値は 38

未解決 回答数: 1
1/19