数学 大学生・専門学校生・社会人 約5時間前 【線形代数】(線型写像) 例⒐1(2)の問題についてです 青で囲んだ空欄埋めてほしいです 文字t、xで表すとどうなるか知りたいです。 §9 ベクトル世界の正比例 47 例 9.1 次の写像 F:R→R2 は,線形写像か. 線形写像 X1 (1) F: IX2 3.1 +4.2 5.17.2 IC1 (2) F: X2 [ ] - [ * * * ] X1 X2 【解】(1) 行列で表わしてもよいが,このままの形で解答する. X1 x= X2 Y1 x+y/i tx1 x+y= tx= x2+y2 tx2 とおくと, 3(201 + y/1) + 4(2x2 + y2) 3x1 + 4x2 3y+4yz F(x + y) = + 5(2x+y/1)-7(.x2+y2) 5.17x2_ 5y17y2 1)\\ = F(x) + F(y) 3tx14tx2 31+4C2 F(tx) = =t =tF(x) 5tx-7txz 5x17x2 よって,Fは線形写像の条件1, 2°を満すから, 線形写像である. 1 2 (2) たとえば, x= のとき,2x === だから, 2 F(2x) - [202]-[6] 2F(x)=2 -2[1]-[3] よって, Fは条件 2° を満さないから, 線形写像ではない. さて、次に,線形写像 F : R" → R" は,正比例関数 F(x) = Ax (A は (m,n) 行列)に限ることを示そう。理屈は同じだから,簡単のため, F:R' →R の場合でやってみることにする。いま,基本単位ベクトル e, e の像を, a11 F(ex)= F(e2)= [ a12 a21 a22 未解決 回答数: 1
数学 大学生・専門学校生・社会人 2日前 【線形代数】 青で囲んだ部分について質問です。 ①は連立一次方程式②はベクトルの積③は行列(拡大係数行列)という認識であってますか? また、赤文字で書いてある部分に間違いがあったら指摘していただきたいです。 練8.3 4 a. = 5 02 = 2 b₁ = 3 3 3 園 b2= + の幼 2 Wa 2 L(a, az) Wb=L (b,,62) とおく x5 3 +y 4 2 2 3 + w 3 f Wan WDだから WanWbの基底 1-7874548 x +y 2 であり、かつ& 3+W1 つまり 3 3 2 x 5 3 +y 2 3 2 Z 3 + W よって Ztw 32+w 連立方程式は、 = Z+ŹW ベクトルの積の形で表せられる。 xc+4g 5x+2y 3x+3g 14-1- 0 2 52 -3-1 y 0 33-1-2 Z 0 0 W 14 -1 -1 0 52-3-1 0 31-1-2 0 ① ② ベクトルの積の形は 拡大係数行列で表す ことができる。 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 4日前 五番教えて下さいm(_ _)m 問題 1.3 ? 1. 次の行列の積を与えられた長方形分割を用いて求めよ. -20, 2 11 0][1 11 0] 4 30 1 3 201 00:12 0 0 2 1 0 00 10 01 0 2 Q2. [4] a2a3] を行列の列ベクトルへの分割とするとき [a] [aza3] 1 を 計算せよ. 2 3 a,+702 3. A=[aaz] (列ベクトル分割), B= のとき積 AB の列ベクトルへ 7 ではダメなのか? の分割を求めよ. < B1 4. A1, Bi はm次正方行列, A2,B2 はn次正方行列とする. Aì と B1, A2 A₁ O B1 0 と B2 が可換であるならば, A= とB= は可換であるこ O A2. 0 B2 とを示せ. Em A 5.Aがm×n 行列のとき を求めよ. 0 En 未解決 回答数: 1
数学 大学生・専門学校生・社会人 11日前 (2)はbn+1−bn=dで解けるのでしょうか? 解き方教えていただければ助かります🙏 10 等差数列 -5, -3, -1, 1, 3, ······ を {an} とする。 数列 {an} の項を, 初項 から2つおきにとってできる数列 α1, A4, A7, ...... を {6} とする。 (イ) 数列{bm} の一般項を求めよ。 (2) 数列{6} はどのような数列か。 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 11日前 どうしてnを無限大にしたときに0になることを証明しているんですか? f(x)=f(0) + f'(x+ 2! Rn(x) = 1! r(@s+... f(n)(0zzn (001) n! f" (0) x2 +... + 44 マクローリン展開 第2章 微 f(x) が0を含む開区間 I で無限回微分可能(すべ てのnに対してn回微分可能) であるとき, 任意のæ∈I と任意のnEN に対して 2.4 テイラーの定理 45 【解】 (1) を示す. 例18より Rm (z) = 0x n! -T” だから1章例題2より, f(n-1) (0) 0x -x-1 (n-1)! + Rn(x), |Rn(x)|= = n! || xn "ex - n! →0 (n→ ∞) f(x)は をみたす 日=日(π,n) が存在する. ここでもしRn(x)0 (n→∞)なら -> f'(0) f" (0) f(x)=f(0) + -x+ 22 +・・・ + f(n) (0) -xn 1! 2! n! +... と無限級数で表される. 右辺の無限級数を f(x) のマクローリン展開ある はマクローリン級数という(級数については6章を参照のこと)。 は証明を省略する (6章 6.4 節参照). 問21 例20の (2) (3) を示せ. 注eのマクローリン展開 (1) において,π=i0 (iは虚数単位; i = √-1) と おくと, sin π, cosæ のマクローリン展開 (2), (3) から eid=cos0+isin O が得られる.これをオイラー (Euler) の関係式という. となり結論を得る。 (2), (3) も同様に示される。 (4), (5) の証明には、 定理 12 において別の形の剰余項(コーシーの剰余など) をとる必要がある. ここで 例20 T xn (1) ez=1+ + + + n! (-x<x<∞) 問22|x|<1のとき次の級数展開が成り立つことを示せ。 ( 6章定理1参照) I 2.5 2n 1 (2) sin x = + 1 3! ・+ (−1)n-1. 5! +... (2n-1)! log 1+2=2(x+++...) 3 5 (-x<x<∞) x2n + .... + (−1)". [( 2n) ! ·+(-1)n−12 +・・・ (-∞<x<∞) x2 24 (3) cos x = 1- 2! 4! x2 (4)log(1+z)=x_ x3 + 2 3 n 1.3...(2n-3) 2.4... (2n) (−1<x≤1) (5)(一般の2項定理) | ネイピアの数とオイラー は任意の実数とする. +(-1)^- 「対数」という言葉はネイピアが導入した. オ イラーは級数 (1+m) = 1 + - a a(a-1)²+ 1 1 1 2! 1+ + +・・・+ 1! 2! ala-1)...(a− n + 1) (Iml<1) を考え、その和をeで表した.また,その数値を計算し,eを底とする対 問23|x|<1のとき次の級数展開が成り立つことを示せ. 1 (1) (1+m)2 = 1-2x+3x² -.... .+ (−1)"(n+1)x" +... (2) V1 +æ=1+zx- 1 1 2 x² 2.4 2 1.3 + 2.4.6 2.3 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 12日前 (2)がわかりません。 【教 p.20~23】 91 421. 大中小3個のさいころを同時に投げるとき, 次の場合の数を求めよ。 □(1) 目の和が8になる。 □(2) 少なくとも1個の目は偶数となる。 1 (3) 偶数2個, 奇数1個になる。 □(4) 目の和が奇数になる。 □ (5) 目の積が偶数になる。 A 道は何するか 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 13日前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 15日前 4(4)(5) と 5 のリミットの計算ができません (4)はこれ以降どのようにすればいいかわからず、(5)と5の計算については全く分かりません どなたか教えてください 数学総合演習 (05/14, 解析) 解答は解答用紙1枚に全て記入すること. 裏面を使っても良い。 ・解答は 解の導出過程 (途中計算) も含めて, ていねいに記述すること. ・日付, 科目, 担当教官,氏名, 学籍番号, クラスを忘れずに記入すること. ※ 科目 数学総合演習1, 担当教官 美暁 解答用紙の提出について (ジャン シャオホン) 1. 演習レポート形式: 複数ページの解答用紙の写真を1つのPDFファイルにまとめて解答用紙に氏名、学籍番号、クラ スを忘れずに記入すること)。 ファイル上 (5MB)。 2 演習レポートのファイル名: "学籍番号演習期 pdf" としていただきますようお願いいたします。 (例: 学生 b1008300 について。 4月21日の演習の場合、レポートは "b1008300-0421.pdf になります。) 3.課題レポートの提出先: 以下の場所に提出してください。 [HOPE]-[数学総合演習11-EFGH]-数学総合演習1-解析 (1-EFGHクラス) (05/14) 提出締め切り:5月15日 (木) 午後6:30 まで。 解答の公開 5月15日 (木) からHOPEで公開されます。 1. (x+2)* を計算しなさい。 2. 次の一般項で与えられる数列のうち、 収束するものを選びなさい. an =2n+1,b=,c="ds=cosl n 3. 数列a.= (-)" が収束する範囲を求めよ。 また、収束するときの 72 極限値 lim (14) を求めよ. +80] 4. つぎの極限を調べよ。 4+8+... +4 n→∞ 1+3+…+ (2n-1) (1) lim n! (3) lim (5) lim V3n+1 72100 (2) lim n→∞0 (4) lim (1+1/+1/+ + n→∞ (6) lim noon- n 5.p>0.0>>とする。 4.+1=20 (1+pan)をみたす数列を考える。 1 + 2pan+s = (1+2pa) を示し, lim == 上を導け、 11-00 2p 未解決 回答数: 1