学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題が分かりません よろしくお願いいたします🙏

現学 課題内容 日本人で,毛髪の本数も誕生月日 (○○月◆◇日) も 性別 (男or女) も全く同じである人が少なくとも2人い ある.このことが成立していることを以下に 「鳩の巣原 「理」を適用して説明しています a,b,cに当てはまる正の整数を, dは 「大きい数」 か 「小さい数」 のいずれかの語句を答えよ. 尚, 解答の回 」の入力は不要です。 答には, (配点: 2点, b2点, c3点, d3点) 人の毛髪は平均で10,0000 (十万) 本と言われてい て 多くても15, 0000 (十五万) 本らしいです. よっ て考えられる毛髪の本数は0本~15,0000本の全 a 通 りです. 誕生月日については, 閏年の2月29日生まれの方がお られることを考慮すると、 考えられる誕生月日は,全部 でb通りあります. よって、考えられる (毛髪の本数, 誕生月日, 性別) の相異なる組は,全部でc通りになります。これを「鳩 の巣」と考えます。 一方, 「鳩」を日本人と考えると, 日本の人口約1, 2000 0000 (1億2千万) 人と少なく見積もってもこの 数は上で求めた 「鳩の巣」 の個数 cよりはdなので, 「鳩の巣原理」により, 日本人で毛髪の本数も誕生月日 (○○月◇◇日)も性別も全く同じ2人が必ずいることが 解りました。 添付ファイルは ありません

未解決 回答数: 1
数学 大学生・専門学校生・社会人

わからないです。 教えてください🙇‍♀️

現学 課題内容 日本人で,毛髪の本数も誕生月日 (○○月 ◇◆日) も性別 (男or女) も全く同じである人 が少なくとも2人いる.このことが成立している ことを以下に, 「鳩の巣原理」を適用して説明 しています。 a, b, cに当てはまる正の整数を,dは「大き 「い数」か 「小さい数」 のいずれかの語句を答え 尚, 解答の回答には, 」の入力は不要 です (配点:a2点,b2点, c3点, d3点) 人の毛髪は平均で10,000 (十万) 本と言わ れていて、多くても15,000 (十五万) 本らし いですよって,考えられる毛髪の本数は0本~ 15,0000本の全 a通りです. 誕生月日については、閏年の2月29日生まれ の方がおられることを考慮すると、 考えられる 誕生月日は、全部でb通りあります。 よって、考えられる (毛髪の本数, 誕生月 日,性別)の相異なる組は, 全部でc通りにな ります これを 「鳩の巣」 と考えます. 一方, 「鳩」を日本人と考えると, 日本の人 口約1,2000,0000 (1億2千万)人と少なく見 積もっても、この数は上で求めた「鳩の巣」の 個数 cよりはdなので, 「鳩の巣原理」によ り,日本人で毛髪の本数も誕生月日 (○○月 ◇◇日) も性別も全く同じ2人が必ずいることが 解りました. 添付ファイルは ありません

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

1体1整数9(1)です。 黒線部でx y z が正の数であることから不等式を作っています。しかし、xyzが正の整数であることを用いればより厳しい条件が出ると思い、1/x + 2/x ≦ 3 と① も用いて条件を出しました。しかし、解答の方が強い条件です。なぜ、そうなるのでし... 続きを読む

9 不定方程式/範囲をしぼる 正の整数工y.zが21+2+2=2,xyzを満たすとき、 3 I y Z (1 Zの値の範囲は Szó である。 (2) 与えられた条件を満たす整数x,y,zの組をすべて求めよ. (阪南大 (2) 不等式を作って範囲をしぼる 本間のポイントは「2はあまり大きくなれない」というこ 例えばぇ=10にはなり得ない。なぜならば、このとき10yx より 1/12/01/12/1/10 とな 3 3 6 1/12/01/10+10+10=1/10 <2になるからである。大小はオマケの条件にも見えるか f f S うな繊論をすることがポイントの問題であり、大小設定が鍵を握っているとも言える。 範囲が決まれば有限個 範囲が決まると、その中に整数は有限個しかない。 1つずつ代入 ることで解決する場合が多い。 エ ■解答譚 1+2+3=2 y 免全てが同符号の数から成立 (1) より 1231212.10/20 2=+ エ 2 3 1 afe 2 ひー+ 2 1s1であるから. ①より 2 2 3 6 2 2 3 また、①+20 より多く 2 25-1/20 25- <2 253 z=2のとき より 21/2+2=1/12 2y+イエ=エリ y 2≤2 りは正 よって、2≦253(リーヌ) ※1日は回答です。正の冬用いると下出るの (2) z=3のとき, (1) の23までの等号がすべて成り立つから. -367 (330) x=y=2=3 お支 2xyをかけて 文で述べた xy-x-2y=0 :. (x-2)(y-4)=8 より20 -4だから (x-2y-4)=(8,1),(4,2) :. (x, y)=(10, 5), (6, 6) 答えは、(x,U,z)=(3,3,3), (10,5,2),(6,62) 22

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

【至急】帝京大学2021年数学の過去問です。 解説お願いしたいです🙇 どなたかお願いします🙏

〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答が有 理数となる場合には, 整数または既約分数の形で答えること。 (1) a+b+c= 2, a²+b²+c² = 6, ab+bc+ca= ア となる。 (2) a = as+ 2 4-√ 12 は . 1 1 1 +. a b C 1 1 1 + + a h² 1 オ である。 エ のとき、a2+1/2 ウ 〔2〕を4≦a≦4を満たす定数とする。 放物線y=x2+7x-a²+6a+17 ....... ①につ 4 いて,次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答 が有理数となる場合には, 整数または既約分数の形で答えること。 11/12のとき、 イ (3) 放物線 ① の頂点のx座標は ア であり, 放物線 ① の頂点のy座標の最小値 イ である。 また, 放物線①をx軸方向に-1, y 軸方向に2だけ平行移動した放物線を②とす であり, 放物線② の頂点のy座標の最大値 る。 放物線 ② の頂点のx座標は である放物線②をCとすると, C上 個ある。 オ ウ である。 y座標の最大値が の点(x,y) で,xが整数かつy<0となるものは は I エ 〔3〕 次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答が有 理数となる場合には, 整数または既約分数の形で答えること。 (1) kを定数とする。 xの2次方程式x^ー (k +10)x+(10k+1)=0が重解をもつんの値 イ である。 ただし, 1 とする。 は. ア ア (2) xの2次方程式x2-5x+2=0の2つの解をα, β とする。 また,xの2次方程式 x2+px+q=0(p,qは定数)の2つの解はα+2,β+2 である。 このとき, p+q= ウ である。 (3) 2次不等式x²8x330の解と, 不等式6< |x-al(a,bは定数)の解が一致 するとき, a= エ b= オ である。 〔4〕 △ABCにおいて, ∠BAC=2∠ACBである。 ∠BACの2等分線とBCとの交点を D とするとき, BD = 2, CD =3である。 次の にあてはまる数を求め, 解 答のみを解答欄に記入しなさい。 解答が有理数となる場合には, 整数または既約分数の 形で答えること。 (1) cos ∠ACD = ア ×ACである。 (2) AB= イ (3) ABCの面積は, 数, である。 ウ は最小の正の整数とする。 (4) △ABD の外接円の半径は, 2√ < I オ 3 である。 ただし、 となる。 ウ は有理

未解決 回答数: 1
数学 大学生・専門学校生・社会人

やさしい理系数学例題3(2)整数分野の証明問題です。 模範解答の意味は理解できますが、16で割ったあまりで分類しようと考えるに至る過程がわかりません。

あり、その最大数はab である。 この定理について興味のある方は, 「ハイレベル理系数学」の例題3と演習問題 14 を参照されたい. 例題 3 正の整数a,b,cが a+b2=c2 をみたすとき,次の (1), (2), (3) を証明せよ . (1) a, b のいずれかは3の倍数である. (2) a,b のいずれかは4の倍数である. (3) a,b,cのいずれかは5の倍数である. 考え方 任意の整数は, 3m, 3m±1 (mは整数) などの形で表せる. 【解答】 (1) 任意の整数は3m,3m±1 (m∈Z) のいずれかの形で表せ, (3m)2 = 0, (mod3) (3m±1)²=1. よって, a, b がともに3の倍数でないとすると, ∫(a2+62)÷3の余りは,2 lc²÷3の余りは, 0,1 であるから, a2+b2=c2 となり矛盾. ゆえに,d2+b2=c2 のとき, a, 6 のいずれかは3の倍数である. (2) 任意の整数は 4m, 4m±1,4m+2 (mez) のいずれかの形で表せ , (4m)²=8.2m² = 0, (4m±1)²=8(2m²±m)+1=1,9, (mod16) (4m+2)^2=8(2m²+2m)+4=4. よって, a, b がともに4の倍数でないとすると, 背理 (a²+62)÷16の余りは, 2, 5, 8, 10, 13 lc²16の余りは, 0, 1,4,9 (5m)2 =0, (5m±1)' = 1, (mod5) (有名問題 ) (5m±2)²=4. よって, a,b,cがすべて5の倍数でないとすると, (終) なぜood 16 で分類しょうと 考える 光に平方数で割った余りを であるから, a+b2=c2 となり矛盾. ゆえに,a+b=²のとき, a,b のいずれかは4の倍数である. (3) 任意の整数は 5m,5m±1.5m±2(m∈Z) のいずれかの形で表せ, (終)

未解決 回答数: 1
1/5