学年

教科

質問の種類

数学 大学生・専門学校生・社会人

増減表についてです。 赤枠で囲んだ部分のプラスマイナスを判定する良い方法を教えていただきたいです。 できれば簡単な方法でお願いします🤲

2 第1章 1変数の微分積分 例題1 (関数のグラフ, 数列) x を非負の実数,r0r<1 を満たす実数とし, 関数f(x) を f(x)=xr* と定義する。 このとき、 以下の問いに答えよ。 df (1) f(x) の導関数 および第2次導関数 dx d2f dx2 を求めよ。 (2) f(x)の増減表を書き、関数y=f(x)のグラフの概形を描け。 (3) n を正の整数とし, 数列 {a} の一般項を an=f(n-1) により定義 する。このとき,初項から第n項までの和を求めよ。 <東北大学工学部〉 ◆アドバイス! (ax)' = a *loga 証明は簡単! 解答 (1) f(x)=xr* より f'(x)=1·r*+x.r*logr= (xlogr+1)r* ・〔答〕 公式: また f" (x) = logror*+(x logr+1)*logr = logr(xlogr+2)r* ・〔答〕 (2) f'(x) = (xlogr+1)*= 0 とすると 1 x= (>0) logr f" (x) = logr(xlogr+2)*=0 とすると x=- 2 logr (> logr よって, 増減および凹凸は次のようになる。 x f'(x) f" (x) 1 2 (+8) logr logr + 0 - 0 + y=α とおくと logy = loga =x loga 両辺を微分すると y y'=loga ..y'=aloga f" (x) 凹凸: f" (x) ・f'(x) の変化 f" (x) > 0 接線の傾き ⇒接線の傾きが増加 グラフは下に凸 y=f(x) したがって (3) an= k=1 この S= SS rs= 2 f(x) 0 rlogr logr 2 2r logr logr (0)

解決済み 回答数: 2
数学 大学生・専門学校生・社会人

後1週間後に受験を控えているのですが志望校の過去問の答えが公表されてなくて困ってます。赤本も出てないです。なのでできれば解答解説、せめて解答だけでも教えて下さい。お願いします。

aton [III] 原点をOとする座標平面において, 点 A(-3,0), 点B(3,0),点 C(0,4) を取り, 3点0, m B, Cを通る円をCl, 3点0, C, A を通る円を Ca とする。 また, 点Cを通る傾き mの直線をLと [I]次の問いに答えよ。 し,直線Lと円Cの交点で点Cと異なる点をP, 直線Lと円C2の交点で点Cと異なる点をQ ly T bno (1) =1+ V2i のとき, z-4ェ+ 7z- 92? +6z+1の値を求めよ。 e co とする。ただし,点Pは第1象限にあるものとする。 次の問いに答えよ。 (1)点P, Qの座標を mを用いて表せ。 ndsuodim (2) 等式 0 (2) 直線 AQ と直線 BP が平行であることを示せ。 (C) =+ bourlames o d 1 oleooog S f()d + S(1)de (3) 四角形 ABPQの面積 S(m) をmを用いて表せ。 を満たす関数」(a)を求めよ。 (4)点Pが第1象限にある範囲でmが変わるとき, S(m) の最大値を求めよ。 1 (3) +y2 +yS 3 エ-yと WーSという条件の下で, yー+2z の最大値を 求めよ。 (4) 自然数nがn回ずつ続いてできる数列1,2,2,3,3,3,4,4,4, 4, の第 2020項を求めよ。 her b h) be S h basora (5) さいころを5回投げるとき, 5つの出た目のうちの最小値が3, 最大値が5である確率を求 めよ。 [II ェ= cos 0 (0S0S2m) とする,関数f(0) = cos 40について, 次の問いに答えよ。 bgebne f odals t To o obm ha eb (1) ((0)をrの多項式 g(x) として表せ。 (2) -1SェS1において, 関数y%= g(x)のグラフの概形を描け。 (3) cos。 3m + coS 5m 7m の値を求めよ。 8 COS + cos + coS 8 (4) cos 3m 3m 5m 7ァ a COS と cos の値を求めよ。 8 8 8 COS COS COS 8 8 8 (5) 曲線y= g(z)とェ軸の正の部分で囲まれた図形の面積をSとするとき, Sの値を求めよ。 nebo nidn nantd b Md o o

解決済み 回答数: 1
1/3