学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題が分かりません よろしくお願いいたします🙏

現学 課題内容 日本人で,毛髪の本数も誕生月日 (○○月◆◇日) も 性別 (男or女) も全く同じである人が少なくとも2人い ある.このことが成立していることを以下に 「鳩の巣原 「理」を適用して説明しています a,b,cに当てはまる正の整数を, dは 「大きい数」 か 「小さい数」 のいずれかの語句を答えよ. 尚, 解答の回 」の入力は不要です。 答には, (配点: 2点, b2点, c3点, d3点) 人の毛髪は平均で10,0000 (十万) 本と言われてい て 多くても15, 0000 (十五万) 本らしいです. よっ て考えられる毛髪の本数は0本~15,0000本の全 a 通 りです. 誕生月日については, 閏年の2月29日生まれの方がお られることを考慮すると、 考えられる誕生月日は,全部 でb通りあります. よって、考えられる (毛髪の本数, 誕生月日, 性別) の相異なる組は,全部でc通りになります。これを「鳩 の巣」と考えます。 一方, 「鳩」を日本人と考えると, 日本の人口約1, 2000 0000 (1億2千万) 人と少なく見積もってもこの 数は上で求めた 「鳩の巣」 の個数 cよりはdなので, 「鳩の巣原理」により, 日本人で毛髪の本数も誕生月日 (○○月◇◇日)も性別も全く同じ2人が必ずいることが 解りました。 添付ファイルは ありません

未解決 回答数: 1
数学 大学生・専門学校生・社会人

【至急】帝京大学2021年数学の過去問です。 解説お願いしたいです🙇 どなたかお願いします🙏

〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答が有 理数となる場合には, 整数または既約分数の形で答えること。 (1) a+b+c= 2, a²+b²+c² = 6, ab+bc+ca= ア となる。 (2) a = as+ 2 4-√ 12 は . 1 1 1 +. a b C 1 1 1 + + a h² 1 オ である。 エ のとき、a2+1/2 ウ 〔2〕を4≦a≦4を満たす定数とする。 放物線y=x2+7x-a²+6a+17 ....... ①につ 4 いて,次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答 が有理数となる場合には, 整数または既約分数の形で答えること。 11/12のとき、 イ (3) 放物線 ① の頂点のx座標は ア であり, 放物線 ① の頂点のy座標の最小値 イ である。 また, 放物線①をx軸方向に-1, y 軸方向に2だけ平行移動した放物線を②とす であり, 放物線② の頂点のy座標の最大値 る。 放物線 ② の頂点のx座標は である放物線②をCとすると, C上 個ある。 オ ウ である。 y座標の最大値が の点(x,y) で,xが整数かつy<0となるものは は I エ 〔3〕 次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答が有 理数となる場合には, 整数または既約分数の形で答えること。 (1) kを定数とする。 xの2次方程式x^ー (k +10)x+(10k+1)=0が重解をもつんの値 イ である。 ただし, 1 とする。 は. ア ア (2) xの2次方程式x2-5x+2=0の2つの解をα, β とする。 また,xの2次方程式 x2+px+q=0(p,qは定数)の2つの解はα+2,β+2 である。 このとき, p+q= ウ である。 (3) 2次不等式x²8x330の解と, 不等式6< |x-al(a,bは定数)の解が一致 するとき, a= エ b= オ である。 〔4〕 △ABCにおいて, ∠BAC=2∠ACBである。 ∠BACの2等分線とBCとの交点を D とするとき, BD = 2, CD =3である。 次の にあてはまる数を求め, 解 答のみを解答欄に記入しなさい。 解答が有理数となる場合には, 整数または既約分数の 形で答えること。 (1) cos ∠ACD = ア ×ACである。 (2) AB= イ (3) ABCの面積は, 数, である。 ウ は最小の正の整数とする。 (4) △ABD の外接円の半径は, 2√ < I オ 3 である。 ただし、 となる。 ウ は有理

未解決 回答数: 1
1/5