学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の知識ある方、以下にある式の導出方法分かりやすく教えていただきたいです。 分かるところだけでも教えてくれると嬉しいです😭 ちなみにこのサイトは、 統計学入門 http://www.snap-tck.com/room04/c01/stat/stat0001.html こ... 続きを読む

19:56 1 allệ (注3) 相関分析と同様に回帰分析の場合も信頼区間を求めることができま す。まずyの推測値の信頼区間は次のようになります。 この信頼区間は母集 団のy推測値の100(1-α) % が含まれる範囲を表し、信頼限界と呼ぶことが多 いようです。 y=a+b=(my-bmx)+bx = my+b(z-mz)→(j-my)=b(x-mz) VR VR V(j-my) = V(j)+V(my)-2C(j,my) = V(g) + -2 = V(y) - VR =V n n n =V(b(z-mx))=(x-m²) 2V(b)=(x-m²) 2VR S エエ (x - ₂)² 2V (6) - Vx{1+ (².²} =VR n S x=X0の時のy推測値の100(1-α)% 信頼限界: U Dol=a+bro ±t(n-2,a) VR -2,0)√| V₁ { 1/2 + ( 2 = m₂) ² } n S エ mx:xの標本平均 Sxx:xの平方和 VR : 残差分散 VR C(jj,my) = y推定値とmyの共分散 t(n-2, α): 自由度(n-2)のt n 分布における100α%点 この100(1-α)% 信頼限界において、x=mxの時の値を計算すると次のように なります。 VR ŷOL =a+bm±t(n-2,0) VR・ -2,0) √/ VR { 1 1 1 + (m₂ - m₂)² S エエ 2²}. =my±t(n-2,a)V n n これは値と残差分散が少し異なるだけで、 平均値の信頼限界(信頼区間) とほ ぼ同じ式であることがわかると思います。 つまり回帰直線は平均値を2次元 に拡張したものに相当し、 y推測値の信頼限界は平均値の信頼限界を2次元に 拡張したものに相当することになります。 次にyの信頼限界を求めてみましょう。 もしaとbに誤差がない、つまりy推 測値に誤差がないとすると次のようになります。 これが許容限界になりま す。 V(g) = V(g+c)=V(e) =VR x=x0の時のyの100(1-α) % 許容限界: gol =a+bro ±t(n-2,a)VVR you x=mxの時: gol = my±t(n-2,a) VVR しかし実際にはaとbには誤差があるので次のようになります。 これが棄却 限界です。 回帰分析の場合は棄却限界のことを予測限界 (prediction limit)と 呼びます。 (x-²)) S エ n n SII V(g+c)=V(g)+V(c) +2C(j,c)=VR /R { 1 + (*² =− m ₂) ² } + V₁ + 0 = VR { 1 + 1 2 + ( x − m ₂ )² ]} x=X0の時のyの100(1-α) % 予測限界: 1 (x-m₂)² yoz=a+bro ±t(n-2.0)/VR =t(n-2,α) √ -2,0) √/V₁ { 1 + 1 + n S エ U x=mxの時: yol = my ±t(n-2,a) 2, a) √/ VR (1+1) VR (1+ 安全ではありません - snap-tck.com

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

大学のフーリエ変換の問題なのですが,回答がないので自分が解いた答えがあってるのかわからないので簡単な解説と一緒に回答を教えてください.問題数が多く大変かもしれませんがお願いします

次の関数をフーリエ級数に展開せよ. 1) f(t) = 13 (-T≤ t < π) 2 t (-π < t < π) た e) f(t) = t4 f(t)= { 0 | sint| (0 ≤ t < π) 3) f(t)=cos ( ≤t<2π) t -2t + 2 (|t| ≤ 1) 1 6) f(t) = -1/2 (1 < |t| ≤ 3) t = -4) 0 (3<|t| < 4, (-1 ≤ t < 1) 2. 次の関数を偶関数への拡張をした後フーリエ余弦級数に展開せよ. 7) f(t) = cosht 8) f(t) = sinh t (−1≤ t < 1) 0 1) f(t) = sint (0 ≤ x < π) 2) f(t) = { (0 ≤ t < 1/2) (1/2 ≤ t < 1) t-1/2 3πt 3) f(t) = cos (0 ≤ t < 1) 4) f(t) = sin (0 ≤ t <l) 21 し 3. 次の関数を奇関数への拡張をした後フーリエ正弦級数に展開せよ. 0 (0 ≤ t ≤ 2π/3) t 1) f(t) = 1 (2π/3 < t < 4π/3) 2) f(t) = {² 0 (4π/3 ≤ t < 2π) 3) f(t) = et (0 ≤ t <l) 4) f(t) = tsint (0 ≤ t < π) 4. フーリエ余弦級数,フーリエ正弦級数に対するパーセバルの等式を導け. 5.次の関数をフーリエ級数に展開せよ. また偶関数への拡張によりフーリエ余弦 数に, 奇関数への拡張によりフーリエ正弦級数に展開せよ. t 1) f(t)=t(π-t) (0 ≤ t < π) 2) f(t) = sin (0 ≤ t < 2π) 2 6. 次の関数を複素フーリエ級数に展開せよ. 1) f(t) = e-lt (-π ≤ t < π) 2) f(t) = e2t (0 ≤ t < 2π) 3) f(t) = πt 0 (-π ≤ t < 0) ={ 4) f(t) = sin (0 ≤ t < 1) t (0 ≤t<n) し 7. 次の を与える級数をフーリエ級数を利用して示せ. πt (0 ≤t < 2/3) (2/3 ≤ t < 1) (0 ≤ t < π) = (0 ≤ t < 2ヶ) -t+4π (2π ≤ t < 4π)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

大学数学、複素関数論、テータ関数に関する質問です。 写真のテータ関数の無限積表示(5.24)の式の1行目の形にどうやってしているのかと、命題5.22の(5.26)の証明を教えていただきたいです。

(b) テータ関数 ヤコビは楕円関数論の研究において, 次の級数を導入した。 9(2) = 22(-1)"-!g"-1/2)" sin(2n-1)Tu n=1 2(g/4 sin Tu-g/ sin 3Tu+q^/4 sin 5Tu-…). (5.23) 三 これはヤコビの楕円テータ関数(以下単にテータ関数(theta function))と呼 ばれるものの1つである. limd,(u)/2q'/4=Dsin Tu なので, 0,(u) は sin Tu 9→0 の一種の拡張と見ることができる。 伝統的な記号にならって, 以下 2ミe2miu a=2 q= eir, と書こう.gl<1だから Imr>0である. このとき(5.23)の右辺は TiT 2Tiu 9=e 9 2と(-1)"-1gm-1/2)?_2"-1/2 _2-n+1/2 =iこ(-1)"gm-1/2)°n-1/2 n=1 2i n=-00 = ig4z-1/2 (-1)"g"(n-1)z" n=-00 と書き直すことができる.右辺に3重積公式(5.22)を用いれば, テータ関数 の無限積表示が得られる: 0,(u) = iq'4z-1/2(1-2) II (1-g"2)(1-g"z-')(1-g") n=1. = 2q/4 sin Tu I (1-2g" cos 2Tu+g")(1-g"). 三 (5.24) n=1 命題5.22 0,(u) はuの整関数で 0,(-u) = ー6,(u). (5.25) 0 0(u) = 0 < (m,nEZ). 0,(u+1) = -0, (u), 9,(u+t) = -e-mi(r+2u)9, (u). (5.27) u= m+nT (5.26) 0 + 2u) [証明](5.25),(5.26) は(5.24)から簡単にわかる. また前節の無限積

回答募集中 回答数: 0
1/2