学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の知識ある方、以下にある式の導出方法分かりやすく教えていただきたいです。 分かるところだけでも教えてくれると嬉しいです😭 ちなみにこのサイトは、 統計学入門 http://www.snap-tck.com/room04/c01/stat/stat0001.html こ... 続きを読む

19:56 1 allệ (注3) 相関分析と同様に回帰分析の場合も信頼区間を求めることができま す。まずyの推測値の信頼区間は次のようになります。 この信頼区間は母集 団のy推測値の100(1-α) % が含まれる範囲を表し、信頼限界と呼ぶことが多 いようです。 y=a+b=(my-bmx)+bx = my+b(z-mz)→(j-my)=b(x-mz) VR VR V(j-my) = V(j)+V(my)-2C(j,my) = V(g) + -2 = V(y) - VR =V n n n =V(b(z-mx))=(x-m²) 2V(b)=(x-m²) 2VR S エエ (x - ₂)² 2V (6) - Vx{1+ (².²} =VR n S x=X0の時のy推測値の100(1-α)% 信頼限界: U Dol=a+bro ±t(n-2,a) VR -2,0)√| V₁ { 1/2 + ( 2 = m₂) ² } n S エ mx:xの標本平均 Sxx:xの平方和 VR : 残差分散 VR C(jj,my) = y推定値とmyの共分散 t(n-2, α): 自由度(n-2)のt n 分布における100α%点 この100(1-α)% 信頼限界において、x=mxの時の値を計算すると次のように なります。 VR ŷOL =a+bm±t(n-2,0) VR・ -2,0) √/ VR { 1 1 1 + (m₂ - m₂)² S エエ 2²}. =my±t(n-2,a)V n n これは値と残差分散が少し異なるだけで、 平均値の信頼限界(信頼区間) とほ ぼ同じ式であることがわかると思います。 つまり回帰直線は平均値を2次元 に拡張したものに相当し、 y推測値の信頼限界は平均値の信頼限界を2次元に 拡張したものに相当することになります。 次にyの信頼限界を求めてみましょう。 もしaとbに誤差がない、つまりy推 測値に誤差がないとすると次のようになります。 これが許容限界になりま す。 V(g) = V(g+c)=V(e) =VR x=x0の時のyの100(1-α) % 許容限界: gol =a+bro ±t(n-2,a)VVR you x=mxの時: gol = my±t(n-2,a) VVR しかし実際にはaとbには誤差があるので次のようになります。 これが棄却 限界です。 回帰分析の場合は棄却限界のことを予測限界 (prediction limit)と 呼びます。 (x-²)) S エ n n SII V(g+c)=V(g)+V(c) +2C(j,c)=VR /R { 1 + (*² =− m ₂) ² } + V₁ + 0 = VR { 1 + 1 2 + ( x − m ₂ )² ]} x=X0の時のyの100(1-α) % 予測限界: 1 (x-m₂)² yoz=a+bro ±t(n-2.0)/VR =t(n-2,α) √ -2,0) √/V₁ { 1 + 1 + n S エ U x=mxの時: yol = my ±t(n-2,a) 2, a) √/ VR (1+1) VR (1+ 安全ではありません - snap-tck.com

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

①-②をして、kについての恒等式を立てたのですが、そのやり方では出来ませんでした。何故かわかる方いらっしゃいますか…??🙇‍♀️🙏

数字I 深音 をが実数全体を動くとき, 2つの直線4,:ky+x-1=0, la: y-kx-k=0の交点はどんな図形 111 [類立教大) を描くか。 y そk=- x+1 を利用する ky+x-1=0 0, yーkx-k==0 2とする。 交点をP(x, y) とすると, x, yは①, ② を同時に満たす。 のから ことから,x+1キ0と k(x+1)=y [1] x+1キ0 すなわち xキー1のとき 01 x8x+130 の場合に分ける。 の文字しを 3から k=- x+1 のに代入して y? +x-1=0 x+1 分母を払って y°+(x+1)(x-1)=0 (13-1x+(18-リ したがって x°+y°=1 4 ④において, x=-1とすると y=0 (1+ txキー1であるから, ゆえに,xキー1のとき, 2直線の交点は、円4から点 x=ー1のときの点は除 (-1, 0) を除いた図形上にある。 [2」 x+1=0 すなわち x==-1のとき 2から ソ=0 ケ x=-1, y=0は① を満たさないから, 点(一1, 0) は図形上-① は -2=0 となり, の点ではない。 以上から,求める図形は 円x+y°=1 63 (x)外する点となる。 O 査 不合理。 ただし,点(-1, 0) を除く。 引京中 09代 検討 のから ky+(x-1)=0, ② から y-k(x+1)=0 よって,直線&は常に点A(1, 0) を通り, 直線&2は常に点 B(-1, 0) を通る。 また,2直線 L, leの係数について,k·1+1·(-k)=0 である から,直線,と直線2は垂直に交わる。 ゆえに,その交点をPとすると したがって,点Pは, 2点A, Bを直径の両端とする円周上 にある。 ただし,lは直線 y=0 を, leは直線x=-1を表すことはな いから,その交点(-1,0) を除く。 し ZAPB=90° le 0=S-+vE-) B -10| A x 1

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

教えてください

17:17 イ ああ forms.office.com または * 指数は“を使って表記(10→10°5) (シグマ(=1,n-a) く例> * えなどの記号にバーが入る場合は、x(パー)と表記 (2+3+4+4+5) × 105 8×3 xV210 ×3 *小文字のシグマはσで表記。使用しているデバイスの 関係ですが表記できない場合は、シグマ(小)と表記 →(((243+4+d454)a10^5)/(Ra?))「(2^10x?) 3 【問題1】肺癌による入院患者のカルテか ら既婚女性の症例を選び出し、本人および 夫の喫煙状況を調べたところ、患者本人は 全く喫煙しない者100人の内、夫が常習喫煙 者である者が60人、夫も非喫煙者が40人で あった。対照群として、癌でない婦人科疾 患の入院患者から、肺癌患者群と年齢構成 が同じになるようにして非喫煙の既婚者100 人を抽出したところ、その夫が喫煙者であ ったのは40人、非喫煙者は60人であった。 この調査結果を用いて、肺癌発症のリスク を検討する。 (1)この調査の手法は疫学の何研究か。 (2)夫の喫煙による妻の受動喫煙と肺癌発症 との関連の強さを示す指標を求め、その意 味を考えよ。 (3)両群の女性に食習慣の調査を行ったとこ ろ、緑黄色野菜を毎日一定量以上食べる者 は、患者群で50人、対照群では60人であっ た。緑黄色野菜充分摂取と肺癌発症との関 連の強さを示す指標を求め、その意味を考 えよ。 回答を入力してください 日

回答募集中 回答数: 0
1/3