学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題、判別式だけでできないのはなんでですか??

Think 例題 35 無理関数のグラフと直線 **** 関数 y=√2x-1 ……………① のグラフと直線 y=x+k •••••• ② との共有 点の個数を調べよ. ただし, kは実数の定数とする. 考え方 まず,無理関数 y=√2x-1 のグラフをかく. 次に,k の変化に応じて, 直線を動かして考える. 直線を上から下に平行移動するとき, 次の2つに注意 すれば, 共有点の個数の変化がつかみやすくなる. ① 曲線 ①と直線 ②が接するときのkの値 y=√2x-1 ...固定 y=x+k 変動 第2章 34 ②] 直線 ②が曲線 ①の端点 (20) を通るときのん の値 つまり、 ①を境として共有点の個数が 0個 1個 2個 ②を境として共有点の個数が 2個→1個 y=v2x-1 とそれぞれ変化する. 解答 ①のグラフは右の図のように なる. y4 まず①②のグラフが接す るときのんの値を求める. ①②より, √2x-1=x+k 両辺を2乗すると, Ø 1 1 x 2x-1=(x+k)? より, ①のグラフと数本の適 当な ② のグラフをかく. y=/20 1/2(x-1)より。 ①のグラフは y=√2x のグラフを 2 x2+2(k-1)x+k+1= 0 x 軸方向に だけ平行 移動したもの この方程式の判別式をDとすると, 重解をもつから, D 1=(k-1)-(k+1)=-2k=0より, k=0 4 次に,直線 ②が点 (20) を通るときのkの値を求める。 10/12th より k=-1/12/ 0= |接する重解をもつ ⇔D=0 ②にx=12, y=0を 代入する. 以上より, ① ② のグラフの共有点の個数は, k>0 のとき, グラフで確認する. 0個 kの値の減少により, <-12, k=0 のとき, 1個 ②は下方に平行移動す る. 1/2sk<0 のとき 2個 Focus 共有点の個数はグラフが接する場合をまず考える 練習 35 関数 y= 2x+3 +3 のグラフと直線 y=ax +2 との共有点の個数を調べよ. ** ただし, αは実数の定数とする. p.994

未解決 回答数: 0
数学 大学生・専門学校生・社会人

(2)について どうゆう手順でとき進めて行くんですか? また、なぜδは最小の値をとるんですか? 図とか想像出来ていないので教えて欲しいです。

48第2章 関数 (1変数) 基本 例題 030 E-8 論法による等式の証明 次の等式をE-8論法を用いて証明せよ。 (1) lim (5x-3)=2 (2) lim (x2+1)=2 x-1 1 基本 指針 (1) とも, 左辺の極限値は存在して, 右辺と一致することは,すぐにわかる。 そのこい E-8論法を用いて証明せよとあるから、関数の収束の定義を今一度確認しておこう。 定義関数の極限 (E-8論法 ) 任意の正の実数に対して、 ある正の実数8 が存在して、f(x)の定義域内の 0<x-a|<8であるすべてのxについて|f(x)-α|<e となるとき、関数f(x)は 12203054 [oclx-alk8 Hon-alc x→αでαに収束するという。 ⇒ (1)証明すべきことは、「任意の正の実数に対して、ある正の実数が存在して 0<|x-1|<8 であるすべてのxについて (5x-3)-2|< が成り立つ。」である。 基本 例題 031 €18 下の指針の定理について, (1) 下の関数の極限の (2) 下の, 合成関数の極 (5x-3)-2|=5|x-1|により, | x-1 <8ならば5|x-1|<5δ であることを利用すれば、 い。 (2)証明すべきことは、 「任意の正の実数に対して、 ある正の実数δが存在して 0<x+1|<8 であるすべてのxについて | (x2+1)-2|<e が成り立つ。」 である。 |(x+1)-2|=|(x+1)(x-1)|=|x+1||x-1|である。 x-1 であるから,xが-1に い状況のみを考えればよく、例えばx+1|<1 すなわち-2<x<0であればx-1|<37 ある。 299- 指針定理 関数の極限の性質 関数f(x), g(x) お したがってδを1より小さくとるとき,x+1| <δであれば | x+1| <1であり、このとき |x2+1-2|=|x+1||x-1|<3|x+1| <38 となる。 これを利用すればよい。 [CH|A|R|T-8 論法が先,8が後 解答 (1) 任意の正の実数e に対して, 8= m とする。 d= 5 このとき,0<|x-1|<8=1であるすべてのxに対して 与式のxに1を代入す れば極限値が2である ことはすぐにわかる。 |(5x-3)-2|=5|x-1|<58=e よって lim (5x-3)=2 (2) 任意の正の実数』に対して,=min {1, 2} とする。 このとき, 0<|x+1|<8であるすべてのxについて、 |x+1|<1であるから x→1 |x-1|=|(x+1)-2|≦|x+1|+2<1+2=3 また,x+1|< であるから |(x2+1)-2|=|x+1||x-1|<13×3=e よって lim (x2+1)=2 X-1 指針にある通り後の 計算を見越して,ô= としている。 < (1) と同様に,等式の極 限値が2であることは すぐにわかる。 三角不等式。 [1] lim {kf(x)+ x-a [2] limf(x)g(2 xa 定理 合成関数の極 関数f(x), g(x) このとき,合成関委 E-δ論法による証 対応する の値を (1) f(x) g(x) の極限 る。 関数の値 える。 (2) 合成関数 f(a) に近づ 解答 (1) 性質 [2] を任意の limf(x)= x-a 0<\x-a 成り立つ ここで, c0 から limf( x-a 48は1との大きく ない方をとればよい。 更に、指針にある通り、 後の計算を見越して 8=1としている。 0<\x が成 lim x-a

未解決 回答数: 1
1/12