学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数Iの三角形の面積についての質問です。 なぜ∠BACはsinだと分かるのですか? 分かる方いたら教えて欲しいです🙇‍♀️

c=2RsinC=24sin120° =2.4.3 =4√3 basin 15 (√6-√2).2.2 531 2 正弦定理から a b sin A sin B 2R よって a b=sin B.. sin A SU =sin 60°.. 2 (2)CD=AB=2であるから,三角形 CDB の面積Sは S=1125sin120°= 5/3 √√2 √√2 =√3-1 2 sin 45° よって,平行四辺形ABCD の面積は ST- √3 2 8- 2 1 √√2 =√3-√2=√6 1 a 1 2 R= 2 sin A 2 sin 45° =√2 41(1) 余弦定理から a2=62+c2-2bccos A 2S=5√3 別解 Aから辺BCに垂線 AH を下ろすと、 B=180°-120°=60°から AH=ABsin60°=2√3 よって,平行四辺形において, 底辺 BC に対する高さが AH であるから, 求め る面積は BCXAH=5√√3 =32+(√2)2-2・3・√2 cos 45° ar S44 (1) (15+21+13+19+20)= 88 =9+2-6√ √ =5 5 =17.6 a0 であるから a=√ =√5 (2) 余弦定理から cos B= c2+α²-b2_82+52-72 2ca 40 1 2.8.5 よって B=60° 答 (2)(45+38+52+54+73+27+25+42) 356 =44.5 8 2.8.5 (3) {2+9+6+(-9)+1 +(-5)+6+1 +2 + (− 42 (1) 2=25, 62+c2=25 から a2=b2+c2 ゆえに A=90° よって, ∠Aは直角である。 (2) a2=64,62+c2=61 から a²>b²+c² - 10 -=1 45 (1) データを小さい順に並べると 8, 14, 22, 48, 97 データの大きさは5であるから, 中央 3番目の値である。 ゆえに A > 90° よって, 中央値は 22 よって、 ∠Aは鈍角である。 43(1) A=180°-(B+C) =180°-(30°+105° から? =45° (2) データを小さい順に並べると 11, 20, 20, 38, 39, 50, データの大きさは7であるから, 4番目の値である。 よって、 三角形ABC の面積は よって、 中央値は 38

未解決 回答数: 1
数学 大学生・専門学校生・社会人

大学 幾何学 専門の方からすると基本問題と伺ったのですが、私が文系大学生ということもあり、何も解答を出せません。 解答を出していただけますと幸いです。 3題のうち1題だけでもとても嬉しいです。 よろしくお願いいたします。

1. S2 = {(x,y,z) ∈ R3 | x2 + 42 + 22 = 1} を単位球面とし, R3 のry平面を自然に R2 と同一 視する: {(x, y,0) | (x, y) = R²} ↔ R², (x, y,0) ↔ (x, y). “北極” (0,0,1) 以外の各点 p∈ S2 に対し, p と (0,0,1) を結ぶ直線と xy平面との交点を n(p) とすることで 写像 ゆN: S2\{(0,0,1)} → R2 が定まる. これを北極からの立体射影とよぶ.同様に,p∈ S2\{(0,0,-1)} と “南極” (0,0,-1) を結ぶ直線を考えることで, 南極からの立体射影 $s: S2 \{(0,0,-1)} → R? ができる.これらにより与えられる球面の二つの“地図”(局所座標)の間の変換 son²を 考えよう.この座標変換の定義域 (すなわち ♀N の行き先の R2 の中の適当な開集合) 上の 座標軸に平行な直線たち Lk={(x,k)|n∈R}, L'k={(k,y)|y∈R}(k= -2,-1,0,1,2) (下の図を参照) を pson でうつしてできる曲線の絵を描け. L2 L1 Lo L_1 L-2 I'_2I'_L' LL'2 son の式を計算して求めても、 作図によって求めても良い. 答えだけではなく, 理由も (読み手が理解できるように) 説明すること.

未解決 回答数: 1
1/5