学年

教科

質問の種類

数学 大学生・専門学校生・社会人

どうしてnを無限大にしたときに0になることを証明しているんですか?

f(x)=f(0) + f'(x+ 2! Rn(x) = 1! r(@s+... f(n)(0zzn (001) n! f" (0) x2 +... + 44 マクローリン展開 第2章 微 f(x) が0を含む開区間 I で無限回微分可能(すべ てのnに対してn回微分可能) であるとき, 任意のæ∈I と任意のnEN に対して 2.4 テイラーの定理 45 【解】 (1) を示す. 例18より Rm (z) = 0x n! -T” だから1章例題2より, f(n-1) (0) 0x -x-1 (n-1)! + Rn(x), |Rn(x)|= = n! || xn "ex - n! →0 (n→ ∞) f(x)は をみたす 日=日(π,n) が存在する. ここでもしRn(x)0 (n→∞)なら -> f'(0) f" (0) f(x)=f(0) + -x+ 22 +・・・ + f(n) (0) -xn 1! 2! n! +... と無限級数で表される. 右辺の無限級数を f(x) のマクローリン展開ある はマクローリン級数という(級数については6章を参照のこと)。 は証明を省略する (6章 6.4 節参照). 問21 例20の (2) (3) を示せ. 注eのマクローリン展開 (1) において,π=i0 (iは虚数単位; i = √-1) と おくと, sin π, cosæ のマクローリン展開 (2), (3) から eid=cos0+isin O が得られる.これをオイラー (Euler) の関係式という. となり結論を得る。 (2), (3) も同様に示される。 (4), (5) の証明には、 定理 12 において別の形の剰余項(コーシーの剰余など) をとる必要がある. ここで 例20 T xn (1) ez=1+ + + + n! (-x<x<∞) 問22|x|<1のとき次の級数展開が成り立つことを示せ。 ( 6章定理1参照) I 2.5 2n 1 (2) sin x = + 1 3! ・+ (−1)n-1. 5! +... (2n-1)! log 1+2=2(x+++...) 3 5 (-x<x<∞) x2n + .... + (−1)". [( 2n) ! ·+(-1)n−12 +・・・ (-∞<x<∞) x2 24 (3) cos x = 1- 2! 4! x2 (4)log(1+z)=x_ x3 + 2 3 n 1.3...(2n-3) 2.4... (2n) (−1<x≤1) (5)(一般の2項定理) | ネイピアの数とオイラー は任意の実数とする. +(-1)^- 「対数」という言葉はネイピアが導入した. オ イラーは級数 (1+m) = 1 + - a a(a-1)²+ 1 1 1 2! 1+ + +・・・+ 1! 2! ala-1)...(a− n + 1) (Iml<1) を考え、その和をeで表した.また,その数値を計算し,eを底とする対 問23|x|<1のとき次の級数展開が成り立つことを示せ. 1 (1) (1+m)2 = 1-2x+3x² -.... .+ (−1)"(n+1)x" +... (2) V1 +æ=1+zx- 1 1 2 x² 2.4 2 1.3 + 2.4.6 2.3

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

(3)について (1)より、のあとどっから出てきた値ですか? どう出てきたか分からないので教えて欲しいです。 また、どうやって赤色の式を立式したのか。 立式後の計算過程はわかるのですが、 最後の1文の式も理解出来ません。 多いですが全て教えて欲しいです。

政宗 3 単調 基本 例題 019 有界で単調減少する数列の極限 次の条件で定められる数列{an} について,以下のことを示せ。 ★★ [基本 a>2 この 1 a=2, an+1= an an 2) =(a+) (n=1, 2, 3, ....) (1) すべてのnについて an≧2 (2)数列{az} は単調に減少する。 指針 (3) 数列{a} は √2 に収束する。 指針 この漸化式はニュートン法(p.96 参照) によって構成され, 近似値 2 を与える計算方法 1つである。 (1)帰納的にa>0であるから,相加平均≧相乗平均の関係を利用する。 (3) はさみうちの原理を利用して, lim an-√21=0 を示す。 12100 解答 (1) α=2>0 であり,漸化式の形から,すべての自然数nについてan>0である。 よって,相加平均と相乗平均の関係から,任意の自然数nについて 11 = 1/2 (an + 2 ) 2 1 1 · 2 √an · 2 =√2 an+1=- an an =2√2 であるから,すべてのnについて 全体 > 「or an≧√2 ord -ano (2) 任意の自然数nについて anz anti-an= 2 = (a + 2) - 2-an -an= 両認して、 2 2an (1)より, an≧√2 であるから an = 2 2. an²≤0 ゆえに 2-an≤0 anti-an 解答 よって, an+1≦an であるから, 数列{az} は単調に減少する。■ (3) 与えられた漸化式により an-√2 より 2an an+1 1 an2-2√2 an+2(an-√2)2 S an 2an 2-12 であるから 2an √2 = 1½ (an - √2) 0≤an-√2 ≤ (1) (a-√2) よって lim (1) (-√2)=0であるから 1\n-1 2an an-√2 antl 20n -(an-√2) F=/(an-2) a) - 2 ½ £ (an-√=)) ant-2FanF liman=√2 818 an an 089-2 osan- 2 参考 lin n- 0500-12

未解決 回答数: 1
数学 大学生・専門学校生・社会人

(2)の解答のところで ①と書いてるとこ見て欲しいのですが、(1)より〜であるから のあとの式が理解できません。どうやってこうなったのか分からないので教えて欲しいです。

E: 24 第1章 実数と数列 13 単調数列とコーシー列 基本 例題 019 有界で単調減少する数列の極限 基本 例題 次の条件で定められる数列{an} について、以下のことを示せ。 >2として, a a1=2, an+1= = (a 2 - (n=1,2, 3, ......) この数列は正 (1) すべてのnについて 2 (3) 数列{an} は√2 に収束する。 (2) 数列{az} は単調に減少する。 指針 数列{an 数列{α 1つである。 指針 この漸化式はニュートン法(p.96 参照) によって構成され,近似値 2 束する (1)帰納的にan>0であるから,相加平均≧相乗平均の関係を利用する。 (3) はさみうちの原理を利用して, lim|an-√21=0 を示す。 72-00 2を与える計算 定理 収 解答 α>2 an+1= 解答(1)α=2>0であり、漸化式の形から,すべての自然数nについてan>0である。 よって, 相加平均と相乗平均の関係から、任意の自然数nについて 以下 よ an+ an +2)=1.2√a. 2-√2 br ano an =2√2 であるから、すべてのnについて (2) 任意の自然数nについて an+1-an= - ½ (an+2)-an-³ 2-an² 2am 2-an 2≤0 (1)より、≧2であるから ゆえに an+1-an≤0 よって, an+1≦an であるから, 数列{an} は単調に減少する。 (3) 与えられた漸化式により an+12 an2-2√/2an+2 2an (an-√2) 2 2an an-√2 (an-√√2) 参 2an (1)より,0≦- an-√√2 2an an 1 であるから 2an 2 よって anti-√2 (an-√2) S 0san-√2(1)(a-√2) lim (12) (a-√2)=0であるから 8218 liman=√2 818

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

極方程式についてです。 点Pが右側にあるときにrがマイナスになっています。これは2枚目の写真のような考え方をしているのかと思いますが、そのときの図と赤枠の図が一致していないように思い、納得できません。 どなたかご説明お願いします🤲

148 基本 例題 84 2次曲線の極方程式 を l とする。点Pからlに下ろした垂線をPH とするとき,e= な点Pの軌跡の極方程式を求めよ。 ただし, 極を0とする。 OP a,eを正の定数,点A の極座標を (α, 0) とし, Aを通り始線 OX に垂直な直線 であるよう PH 基本 81,83 指針▷点Pの極座標を (10) とする。 点Pが直線lの右側にある場合と左側にある場合に分け て図をかき, 長さ PH を 1, 0, αで表す。 そして, OP=ePH を利用してr= 0 の式)を 導くが,<0を考慮すると各場合の結果の式をまとめられる。 vl P(r,0) H A(a, 0) 解答 ℓ 点Pの極座標を (r, e) とする。 点Pが直線lの左側にあるとき PH=a-rcose (*) 点Pが直線lの右側にあるとき P(r, 0) L H OP=ePH から PH=rcos0-a よって r(1±ecos0)=±ea (複号同順) 1±ecos0≠0 であるから r=±e(a-rcos 0 ) A(a, 0) X ea r= ①または tea≠ 0 から r (1±ecos0)≠0 π 1+ecos 0 ea -r= 1-ecos 0 注意14/02/23のとき、 図は次のようになるが,(*) は成り立つ。 ea e ②から -r= ②' 1+ecos (+) P(r, 0) H 点(r, 0) と点(-r, 0+π) は同じ点を表すから, ①と②は 同値である。 よって, 点Pの軌跡の極方程式は r= ea 1+ecos 0 -a- X -rcose 検討 2次曲線と離心率 1. 上の例題の点Pの軌跡は, p.122 基本事項から、焦点 0, 準線ℓ,離心率eの2次曲線を表し, 0 <e<1のとき楕円, e=1のとき放物線, 1 <eのとき双曲線 である。このように, 曲線の種類に関係なく1つの方程式で表されることが利点である。 2.例題で,点A の極座標を (a, π) [準線 l が焦点の左側] とすると,上と同様にして、点P

解決済み 回答数: 1
1/21