学年

教科

質問の種類

数学 大学生・専門学校生・社会人

4(4)(5) と 5 のリミットの計算ができません (4)はこれ以降どのようにすればいいかわからず、(5)と5の計算については全く分かりません どなたか教えてください

数学総合演習 (05/14, 解析) 解答は解答用紙1枚に全て記入すること. 裏面を使っても良い。 ・解答は 解の導出過程 (途中計算) も含めて, ていねいに記述すること. ・日付, 科目, 担当教官,氏名, 学籍番号, クラスを忘れずに記入すること. ※ 科目 数学総合演習1, 担当教官 美暁 解答用紙の提出について (ジャン シャオホン) 1. 演習レポート形式: 複数ページの解答用紙の写真を1つのPDFファイルにまとめて解答用紙に氏名、学籍番号、クラ スを忘れずに記入すること)。 ファイル上 (5MB)。 2 演習レポートのファイル名: "学籍番号演習期 pdf" としていただきますようお願いいたします。 (例: 学生 b1008300 について。 4月21日の演習の場合、レポートは "b1008300-0421.pdf になります。) 3.課題レポートの提出先: 以下の場所に提出してください。 [HOPE]-[数学総合演習11-EFGH]-数学総合演習1-解析 (1-EFGHクラス) (05/14) 提出締め切り:5月15日 (木) 午後6:30 まで。 解答の公開 5月15日 (木) からHOPEで公開されます。 1. (x+2)* を計算しなさい。 2. 次の一般項で与えられる数列のうち、 収束するものを選びなさい. an =2n+1,b=,c="ds=cosl n 3. 数列a.= (-)" が収束する範囲を求めよ。 また、収束するときの 72 極限値 lim (14) を求めよ. +80] 4. つぎの極限を調べよ。 4+8+... +4 n→∞ 1+3+…+ (2n-1) (1) lim n! (3) lim (5) lim V3n+1 72100 (2) lim n→∞0 (4) lim (1+1/+1/+ + n→∞ (6) lim noon- n 5.p>0.0>>とする。 4.+1=20 (1+pan)をみたす数列を考える。 1 + 2pan+s = (1+2pa) を示し, lim == 上を導け、 11-00 2p

未解決 回答数: 1
数学 大学生・専門学校生・社会人

教えてほしいです、、🥲 中等教科教育法数学①です、! 回答の流れも一緒に教えてくださると、本当にすごく助かります、、💦 ②もあげるので、そちらもお時間あれば答えてくださると嬉しいです😖

中等教科教育法数学 ⅡI 第1設題 2 3 14 15 6 18 次の無理数の分母を有理化せよ. 1 (1) (2) 1+√5 +√7 1 2-35 (3) 1 1+√3+2√9 V6v3 + 10 - V6√3-10 の値を簡単にせよ. 次の問いに答えよ. (1) 多項式 + 34 + 53 + 522 +3 + 1 を実数係数の範囲で因数分解せよ. (2) 多項式 100 + 275 + 32:50 + 4225 + 5 を 2² + +1 で割った余りを求めよ. 実数, y, ²x2+12+22=02, (aは正の定数) を満たして変化するとき, 3 + y + 2-3xyzの 値の最大値、最小値をそれぞれ求めよ. 次の漸化式で定まる数列 {an}の一般項を求めよ : an+2=23/an+1 a² Qo=1, a1=2. f(x)=2x3 +32-2 とする. このとき, 次の合成関数の値は, 10 進表記の下で,1000個以上の9を含 むことを示せ: f(f(...ƒ(9))). 10個 △ABC において, AB = 5, BC = 7, CA = 8 とする. 次の問いに答えよ. (1) 角のうち1つであることを示せ . (2) △ABC の各頂点を各辺上にもつ正三角形DEF を考える.但し, 頂点 A, B, C はそれぞれ辺 EF, DF, DE 上にあるとする. このとき, 辺 EF の長さの最大値を求めよ. f(x)=x-10x2+kx とする.但し, k は正の実数とする. (1) 方程式f(z)=0が3つの実数解をもち, それらの解が互いに1以上離れているためのんの条件を 求めよ. (2) (1) の条件を満たすんのうちで, 曲線y=f(x) とz軸とによって囲まれる図形の面積を最小にす るものを求めよ. 19 100円 105円の硬貨合計 4個を用いて B 円払うとする. ある A, B について, 相異なる支払い 方法が2通りあるようなAの最小値を求めよ. |10| 次の問いに答えよ. (1) 1からnまでのn個の自然数のなかから, 相異なる任意の2数をとってつくる, あらゆる積の和 を求めよ. (2) 1からnまでのn個の自然数のなかから, 相異なる任意の3数をとってつくる, あらゆる積の和 が次で与えられることを示せ: 1372(n+1)^(n-1)(n-2).

未解決 回答数: 1
1/6