学年

教科

質問の種類

数学 大学生・専門学校生・社会人

大学 幾何学 専門の方からすると基本問題と伺ったのですが、私が文系大学生ということもあり、何も解答を出せません。 解答を出していただけますと幸いです。 3題のうち1題だけでもとても嬉しいです。 よろしくお願いいたします。

1. S2 = {(x,y,z) ∈ R3 | x2 + 42 + 22 = 1} を単位球面とし, R3 のry平面を自然に R2 と同一 視する: {(x, y,0) | (x, y) = R²} ↔ R², (x, y,0) ↔ (x, y). “北極” (0,0,1) 以外の各点 p∈ S2 に対し, p と (0,0,1) を結ぶ直線と xy平面との交点を n(p) とすることで 写像 ゆN: S2\{(0,0,1)} → R2 が定まる. これを北極からの立体射影とよぶ.同様に,p∈ S2\{(0,0,-1)} と “南極” (0,0,-1) を結ぶ直線を考えることで, 南極からの立体射影 $s: S2 \{(0,0,-1)} → R? ができる.これらにより与えられる球面の二つの“地図”(局所座標)の間の変換 son²を 考えよう.この座標変換の定義域 (すなわち ♀N の行き先の R2 の中の適当な開集合) 上の 座標軸に平行な直線たち Lk={(x,k)|n∈R}, L'k={(k,y)|y∈R}(k= -2,-1,0,1,2) (下の図を参照) を pson でうつしてできる曲線の絵を描け. L2 L1 Lo L_1 L-2 I'_2I'_L' LL'2 son の式を計算して求めても、 作図によって求めても良い. 答えだけではなく, 理由も (読み手が理解できるように) 説明すること.

未解決 回答数: 1
数学 大学生・専門学校生・社会人

この問題の問題13-1(3)(4)、問題13-2の解答を作ってください! お願いします!

2021年 物理学演習2 第13回 デルタ関数 関数f(x)がどのような関数であっても次のような関係を満たす8(x) をデルタ関数という。 「r86) = f0) JO (x * 0) l0(x = 0) 8(x) = このデルタ関数は物理学者の P.A. Dirac によって発明された。名前に関数とついているが、正確 には関数ではなく汎関数の一種の超関数で、線型性と連続性などを満たした汎関数である。 関数: 数 → 数 例えば x → y=f(x) 汎関数:関数 → 数例えば f(x) → f(0) = Sf(x)6(x)dx デルタ関数は関数では無いが、実際には下記のような関数の極限とみなすことができ、どの表現も 同等である。 8(x) = lim 8,(x), ど→+0 8,(x) = {o (x> £/2) 1 28 8(x) = lim 8,(x), E→+0 6,(x) = 2x?+ 2 1 8(x) = lim 8,(x), ど→+0 6(x) = e VTE 8(x) = lim 8,(x), 1 8,(x) = 「e-ddk Zt J-o 1(x2 0) lo (x < 0) 8(x) = 0'(x), 0(x) = 3次元のデルタ関数は以下のように1次元のデルタ関数の積になる。 8(r) = 6(x)6(y)8(z) (o (x =y=z= 0) lo (x =y=z=0以外の場合) 8(r) = 問題13-1 f(x)はx| → oで0となるなめらかな関数とする。デルタ関数8(x) f(x)6(x - a)dx= f(a) について次の性質を証明しなさい。 (1) x6(x) = 0 (2) 6(ax) = )(a>0) (3) 6(x) = 0°(x) so (x< 0) l1 (x> 0) 0(x)は階段関数(ヘビサイド関数)であり、e(x) = である。 {8(x - a) + 6(x + a)}(a> 0) 問題13-2 正規分布を表す次式 = (x)9 がa→ +0 のときにデルタ関数となることを証明しなさい。 1 -exp V2To 2g2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

このグラフの記述と説明を3つずつ自由に解答してください。 至急ですので、よろしくお願いします

9:59イ ll全』 webclass.edu.tuis.ac.jp 表13.4年創大学への進学率と18歳人口の推移 識人口(人 学率 |学率女||学率 計() 79 年 15 年 0 年 5532年 533年 3年 1,713.341 12239 1746.709 14 1114 12 111 24」 1 1521 145 117 23 25 24 231 25 6 S14年 S 1M1(SH) 17年 L S 111 195,7 14872 154| 145 1 11 100 年 年 15540年 S41)年 S42年 L1ES43) 1 S44) [70545) 915 年 4年 101 147657 2491231| 511 計 46 7 45 11』 2,426,802 」 205 220 247] 273 201 15 49 2.539,558 2133.508 147237 T 7 154 65 11145 41064 216 14 10| 114 974(549 1975(550) 1976(551) S52年 年 197554年 年 S年 1621.728 10 1542,04 121574] 150495 154186 127 126| 125| 122」 121 1221 122 221 264 21 21 T 121025 14 1556,578 150694| 12.7」 2,034 1116 2005425 2044.923 2041471 1150 10300 年 1 ) 244 M4,552年 1 0) 161年 1 S2年 年 H年 (H2年 1 年 1 H 386 342 53 137 125| 265 216 144 2471 246 41 14 45 352 147」 111 171 190 10| 4年 4 0 3011 4 年 H 1112 247 T000| 1622.198 154520」 151094」 IS 502.7111 1444 141040 145471| 1325.20] 171| HB)年 197H 413 434 449 OH9年 OH10年 H1年 20000H12)1 2001H13)年 02H14年 200H11年 04H年 H17年 2006H 2007H1 200H20 2009H21年 2010H22 2011H23)年 1309 012H24年 1102I 2013H25年 260 275 349 364 241 151 271 71 05] 11 470 3 513 521 535 52 52 3681 85 424 442 |55 |2 11242| 1213.709 1,199,309 2 509] 510] 442 564 540 556 540 45 1227,736| ※1.4年制大学は学部のみ、短期大学は本科のみ、進学率は通年度高卒生を含む ※2 18歳人口の定義は表11と同じ く出典> 文部映計要覧昭和31~41,42~平成13年版 学校基本調査報告書昭和40年雄 文部科学統計要平成14~25年版 『千人) 連学率-男 男金計 連学率 150 10時 人口 (人) 10 車 500 図13.4年制大学への進学率と18歳人口の推移 く

回答募集中 回答数: 0
1/2