学年

教科

質問の種類

数学 大学生・専門学校生・社会人

確率の勉強をしている学生なのですが、この問題が分かりません。どなたか教えていただけませんか。

練習問題 1.8 (積率母関数) X を非負の確率変数とし, x(t) = Eetx は全てのt∈ に対して有限であると仮定する.さらに,全てのt∈ R に対し E [XetX] < ∞ であると仮定する.この練習問題の目的は, '(t) = E [Xetx] で あり、特に'(0)=EX であることを示すことである。 微分の定義, すなわち次式を思い出そう. 4'(t) = lim x(t) - (s) lim st t-s st EetxEesx t-s 「etx = lim E st t-s 上式の極限は,連続な変数sについて取っているが,t に収束する実数列{8}n=1を 選ぶことができ, 次を計算すればよい. 「etx e³n X lim E sn→t t-Sn これは、次の確率変数の列 etx -enx Yn = t-Sn の期待値の極限を取っていることになる.もしこの極限が, t に収束する列{Sn}=1 の選び方によらず同じ値になるならば、この極限も limotE [ex と同じで,そ れは '(t) である. .tx sx ← -e t-s 解析学の平均値の定理の主張は,もしf(t) が微分可能な関数ならば、任意の実数 s ともに対し,stの間の値の実数0で次を満たすものが存在するというものである. f(t)-f(s) =f' (0) (t-s). もしweΩを固定し,f(t) = etx(w) を定義すると,この式は, etX(w)_esx(w)=(t-s) X (w)e (w)x(w) (1.9.1) となる.ただし,(ω) はωに依存する実数 (すなわち,tとsの間の値を取る確率変 数)である. (i) 優収束定理 (14.9) (191) 式を使って,次を示せ. lim EY = Elim Yn=E [XetX] . (1.9.2) n→∞ [n→∞ このことから,求める式 4'(t) [XetX ] が導かれる. (ii) 確率変数 X は正の値も負の値も取り得、全てのt∈Rに対し Eetx < かつ E [|X|etX] < ∞ であると仮定する。 再度 '(t) = E [XetX] を示せ(ヒント: (1.3.1) 式の記号を使って X = X + - X- とせよ . )

未解決 回答数: 1
数学 大学生・専門学校生・社会人

多様体を構成するために、位相空間に完全アトラスを導入するところで質問です。 完全アトラスを導入するメリットとして、この文章の下線部を「異なる座標系を用いたのに同じ計算ができてしまうという問題が解消される」解釈したのですが、そこがよくわかりません。座標系を変えて計算する... 続きを読む

1 Two n-dimensional coordinate systems & and ŋ in S overlap smoothly provided the functions on¯¹ and ŋo §¯¹ are both smooth. Explicitly, if : U → R" and ŋ: R", then ŋ 1 is defined on the open set ε (ur) → ° (UV) V and carries it to n(u)—while its inverse function § 4-1 runs in the opposite direction (see Figure 1). These functions are then required to be smooth in the usual Euclidean sense defined above. This condition is con- sidered to hold trivially if u and do not meet. Č (UV) R" Ĕ(U) n(UV) R" S n(v) Figure 1. 1. Definition. An atlas A of dimension n on a space S is a collection of n-dimensional coordinate systems in S such that (A1) each point of S is contained in the domain of some coordinate system in, and (A2) any two coordinate systems in ✅ overlap smoothly. An atlas on S makes it possible to do calculus consistently on all of S. But different atlases may produce the same calculus, a technical difficulty eliminated as follows. Call an atlas Con S complete if C contains each co- ordinate system in S that overlaps smoothly with every coordinate system in C. 2. Lemma. Each atlas ✅ on S is contained in a unique complete atlas. Proof. If has dimension n, let A' be the set of all n-dimensional coordinate systems in S that overlap smoothly with every one contained in A. (a) A' is an atlas (of the same dimension as ✅).

未解決 回答数: 0
数学 大学生・専門学校生・社会人

数Iの2次方程式についての質問です。 マーカーで引いてある数字はどこから出てきたのでしょうか? 分かる方いたら教えて欲しいです🙇‍♀️!

右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺AB, AC 上に AD AE となるように2点D,Eをとり,D,Eから辺BCに 垂線を引き、その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm² となるとき,辺FG の長さを求めよ。 F CHART & SOLUTION 文章題の解法 基本 66 ① 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=x として, 長方形 DFGE の面積をxで表す。 そして、 面積の式を =20 とおいた の2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 答 FG=x とすると, 0<FG<BC であるから A 0<x<20 ① D また, DF=BF=CG であるから 2DF=BC-FG B 20-x よって DF= 2 長方形 DFGE の面積は DF・FG=20-x.x 2 20-x ゆ x=20 2 整理すると これを解いて x2-20x+40=0 x=-(-10)±√(-10)2-1.40 =10±2√15 ここで, 02/15 <8 から 10-8<10-2/15 <20, 2<10+2/15<10+8 よって、この解はいずれも ①を満たす。 したがって FG=10±2√15 (cm) E 定義域 ←∠B=∠C=45° であるか 5, ABDF, ACEG G C 角二等辺三角形。 xの係数が偶数 → 26′型 3章 9 2次方程式 解の吟味。 0<2√15=√60<√64= =8 単位をつけ忘れないよう に。

未解決 回答数: 0
数学 大学生・専門学校生・社会人

中等教育教科法数学②です! 難しいです、。。 ①もあって、、教えてもらえると嬉しいです、。 よろしくお願いします🙇🏻‍♀️💦

中等教科教育法数学 ⅡI 第2設題 |1| 3 地点 P, Q, R があり,PからQを通る Rまでの道のりは 7200 [m] で, P から Q までの道のりと Q からRまでの道のりは等しい. A,B,Cの3人が、 次のようにしてPからQまで手紙を配達した : 2 • A は10時にPを毎分 75 [m] の速さでQに向かって出発し, B に出会い, 手紙を渡してすぐに 向きを変えて来た道を同じ速さでPに戻った. 15 ・BはAより何分か遅れてQを毎分90 [m] の速さでPに向かって出発し, A に出会い, 手紙を 渡してすぐに向きを変えて来た道を同じ速さでRに向かった. そして,出発点 Q を通過した後 Cに出会い, 手紙を渡してすぐに向きを変えて来た道を同じ速さでQに戻った. ・CはBより何分か遅れて R を毎分125 [m] の速さでQに向かって出発し, B に出会い, 手紙を 受取りすぐに向きを変えて来た道を同じ速さでRに戻り, 手紙は R に届いた. 3人が手紙の受け渡しを終えてそれぞれの出発点に戻るまでに, AとBの歩いた時間は等しく, A と Cの歩いた道のりは等しかったという. (1) 手紙が R に届いた時刻を求めよ. (2) B が Q を出発した時刻, C が R を出発した時刻をそれぞれ求めよ. 次のメモを持ってあなたは宝島を目指した: 1 5 5 5 5 5 5 5 5 5 5 島の中央に桃栗, 柿の木が立っている野原がある. . 桃の木から栗の木に向かって歩数を数えて歩く. 栗の木に着いたら右へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. 桃の木から柿の木に向かって歩数を数えて歩く. 柿の木に着いたら左へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる . ・ 2つの杭のちょうど真ん中の位置に宝が埋まっている. 宝島に渡り目的の野原に着いたあなたは愕然とした. 桃の木だけが枯れてしまったようで跡形もなく なっていた. あなたは宝を掘り当てることができるかを論ぜよ. 紙を筒状に丸めて半径r高さんの直円筒をつくる. 図のように, 直円筒の高さ方向に平行で, 円筒の中心を通る長方形 ABCD を考 える. この長方形の頂点 B, D を通り, この長方形に垂直な平面 P で直円筒を切る. (1) 平面 P 上の, 切り口で囲まれた部分の面積を求めよ. (2) 直円筒を切ってできた2つの部分をそれぞれ広げて平面とし たとき, この平面上で切り口はどのような曲線になっているか論 ぜよ. 4 長さ1の正方格子を考える. 格子点上に頂点にもつ正5角形は存在しないことを示せ . 4桁の自然数nについて, n3 の値の下4桁がnとなるものを全て求めよ. B CA D 6 縁が楕円の形をしたビリヤード台を考える. この楕円の1つの焦点から玉を突くと, 縁に当たり跳ね 返った玉はもう一方の焦点を通過する. これを示せ .

未解決 回答数: 1
1/6