学年

教科

質問の種類

数学 大学生・専門学校生・社会人

波線部分が理解できません😿なぜそのように言い換えられるかが不明ですよろしくお願いします🙇

EN論法で, 数列の極限を攻略しよう! 数列と関数の極限 818 一般項an が与えられたとき,その極限liman の問題は高校でも既に勉 強しているね。でも,数列{an}が極限値 αをとることを示す厳密な証明 法として,大学の数学では,e-N論法をマスターする必要があるんだよ。 イプシロン・エヌろんぼう”と読む。 まず,この “e-N論法” を下に示す。 E-N論法 正の数をどんなに小さくしても,ある自然数 N が存在して, nがn≧Nならば,|an-a|< となるとき, liman=α となる。 n→∞ これだけでは,なんのことかわからないって? 当然だね。 ここは,大学 の数学を勉強する上で, みんなが最初にひっかかる第1の関門だから丁寧 に話すよ。 この意味は,正の実数を小さな値, たとえば, c = 0.001にとったとし ても,ある自然数Nが存在して, 数列 41, 2,., an-1, ax, ax+1, … のうち n≧Nのもの, すなわち ax, ax+1, に対して, α との差αが、 (N,N+1,... ε=0.001より小さく押さえられる, と言っているんだね。 ここで,正の実数は連続性と稠密 (ちゅうみつ)性をもつので,こ を限りなく0に近づけていくことができる。 それでもあるNが存在し n≧N をみたす an について, lan -α < が成り立つといっているわけ ら, n→∞のとき, α はαに限りなく近づいてlim=α と言える だね。 納得いった? 818

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

解答の 増加するから、以降の解説が全く分かりません。 どなたか解説お願いします。

2 (an) in 211/2/11 基本 例題 029 関数の極限 -δ論法の基本 (am) = f(s) th ★★ The を払えよ! 関数f(x) =x2+1は, x→1で2に収束する。 E0.05 0.005 のとき |x-1|<8 ならf(x)-2|<g を満たすような正の実数の値をそれぞれ1つ定め よ。また、一般ののときはどうすればよいか。 指針 e-δ論法(基本例題 030 の指針参照) の言葉で ya x→1のときf(x) 2になる事実 . 6 2<y<2+s をとっても、それに対応してx=1を中心とす る範囲 0<x-1|<8 を十分小さくとれば、この範囲のすべて のxに対して y=f(x) の値が2-s<y<2+e の範囲に含まれ る」 ということである。 を説明すると 「y=2 を中心とするどんなに小さい範囲(1+8) S 2+cl 2 f(1-0) 2- 1 この収束を示すには、y軸の区間 2-e<y <2+e が任意に与 えられたとき, x軸の区間 0<|x-1| <δをみつけることにな る。 01 - 8 11+8 f(1+δ)-2>2-f(1-δ) であるから,まずはs=0.05,0.005 の場合に具体的に計算をしてか ら 「f(1+8) <2+s ならばf (18) >2-c となること」 を示す。 これにより,f(1+8)=2+s という式から上限となるδを決定できる。 または「任意の正の数」であるから,<e の場合だけでなく, >1の場合も別に考える。 E-δ論法の詳しい説明は本書の53ページまたは「数研講座シリーズ 大学教養 微分積分 の61,62ページを参照。 解答 f(x) は x>0 の範囲で単調に増加するから、ff(1-6)>2-6 かつ f(1+δ) <2+ となる正の数δを1つ定めれば, 1-8 <x<1+8となるすべてのxに対して2-s<f(x) <2+s が成り立つ。 [1]=0.05 のとき (0.95)=1.95, (105) 2.05 であるから, 1-δ<x<1+δとなるすべてのxに対して 2<f(x) <2+が成り立つための条件は 180.95 かつ 1+1.05 である。 例えば,8=0.01 とすると (18)=0.992=0.9801 0.95 より (1+δ)²=1.012=1.02011.05 より 1-8≥√0.95 1+8√1.05 E-δ論法の基本 を満たしている。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

【ε-δ論法_連続性の証明】 参考書内の演習問題についてです。 以下①~③の3点教えてください。 ▼画像の赤枠について ・①なぜ|x-1|²がδ²に変化するのでしょうか? ・②δ² + 4δ - ε = 0がなぜδ = -2±√(4+ε)になるのでしょうか? ... 続きを読む

lim∫(x)=f(1) を示すための - 論法は次の通りだ。 x→1 > 0, 80s.t. 0<x-1|<8⇒\f(x) f(1)| <e 解答&解説 Yɛ>0, ³8>0 s.t. 0<|x-1|<8⇒\ƒ(x) −ƒ(1)|<ɛ (*) このとき, lim f(x)=f(1) となって, f(x)はx=1で連続と言える。 ナ 正の数』をどんなに小さくしても、 ある正の数 が存在し, 0<x-1|<8 ならば、 || (x) - f(1) | <e となるとき, limf(x)=f(1) が成り立つ。 連続条件 よって, (*)が成り立つことを示せばよい。 0<|x-1|<8のとき, |f(x) f(1)|=|x'+2x-3|=|(x-1)(x+3)| = |(x−1){(x−1)+4}| =|x-1+4|x-1|- < 82+48 1²+2+1=3 公式: ||A+B|≦|A|+|B|| を使った! + ヒント! が成り立つことな 解答&解説 Y>0, ³8 f(x) f(1) | <82+48 < g をみたす正の数 8 の存在を 示せばよい。 82 +48g < 0 をみたす の範囲をで表す。 このとき, lim よって, (* 0<|x-2 ( ':' |x-1|<8) ゆえに,正の数がどんなに小さな値をとっても, 8' +48 - <0 をみたす正の 数δ が存在することを示せばよい。 この不等式を解いて、 -2-√4+ <8<-2+√4+8 百 8 の2次方程式: 82+48-8 = 0 の解δ=-2±√4+6 これを使った! lg(x よって,どんなに小さな正の数が与えられても, 8 <-2+v4+c をみたす正 の数 8 が存在するので, (*)は成り立つ。 これで, f(x) が x=1で連続であることが示された。 … (終) W

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

【至急】帝京大学2023年数学の過去問です。 解説お願いしたいです🙇 どなたかお願いします🙏

|-53- 〔1〕 数学(総合) 〔2〕 (1) 752-2の整数部分をa、小数部分をbとするとき. b= ア さらに, (2) 4x+ 1 4x = 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 bx+y 2-b となる。 (1) aを定数とする。 xの2次方程式 y= イ ウ となり (a+26)²= =bを満たす有理数x, y は, x = カキ =√5のとき、64x+6 x 2 + (a + 1)x + α² + α-1=0 ...... ① <a< について, 判別式Dは. D=- ア a². a+ ウ となる。 したがって, ① が異なる2つの実数解をもつαの値の範囲は, エオ カ ⑩x238 ① 38 < x 39 239 < x² ≤ 40 コサ ③ 40 <x≦41 ④ 41 < x² キ したがって, xの整数部分が コ (2) 正の数xとその小数部分yに対して, x2+y2 = 40 ① が成り立つとする。 xについて次の⑩~④のうち,正しいものは ク である。 エオとなる。 サ となる。 y=クケとなる。 となる。 ケ とわかる。 これと①より. 〔3〕 αを定数とする。 放物線y=-x-ax +7・・・・ ① について考える。 放物線 ① について次の⑩~④のうち,正しいものはア とイ である。 ただ し、解答の順序は問わない。 〔4〕 ⑩ 放物線①は上に凸である。 ① 放物線①は下に凸である。 ② 放物線①はx軸と共有点をもたない。 3 放物線①はx軸と共有点を1つだけもつ。 ④ 放物線 ① は x軸と共有点を2つもつ。 -1≦a≦3における放物線① の頂点のy座標は,a= ウ のとき最小値 I カキ ク a= オ のとき, 放物線①は, 放物線y=-x²+xのグラフをx軸方向に ケコ y軸方向に サ だけ平行移動したものとなる。 をとり, a= COSA= (1) AB = 7,BC=5,CA=4√2 の△ABCについて さらに, sin B = siny_ sin a オ である。 さらに, sin B sina ア イ である。 のとき最大値- コサ シス である。 また, 外接円の半径は カ をとる。 キ である。 (2) AB = 4,BC=7. CA = 5の△ABCの辺BC上にBD =3となる点Dをとる。 ∠BAD = α, ∠CAD = β, ∠ADB=y とする。このとき ク ウ オ I である。

解決済み 回答数: 1
1/3