学年

教科

質問の種類

数学 大学生・専門学校生・社会人

青チャート数3 例題223(2)の問題で添付二枚目のように解いたのですが構いませんか🙇‍♀️添削お願い致します。

anx 指針>被積分関数が f(cos.c)sinx, S(sinx)cos.x の形 に変形できるときは, それぞれ なお, tan=tとおく方法もある。詳しくは次ページ参照。 371 次の不定積分を求めよ。 [sinx-sin'x 1+cosx dx -dx △ (2) (藤のやフ sinx |p.365 基本事項3 cOS.x=t, sinx=tとおく ことにより, 不定積分を計算することができる。 sinx-sin°x (1-sin'x)sinx cos x 7章 1+cosx 1+cos x sinx f(cosx)sinx の形 1+cosx 32 sinx 1 sin?x 1-cos?x *sinx - f(cos.x)sinx の形 sinx 解答 ) cos.x=tとおくと, -sinxdx=dtであるから cos?x [sinx-sin'x 12 -dt 1+t dx= 1+cosx *sinxdx= A 1+t 1+cos x t+1 1 nia --(-1+aro--+レー1ogl1+d|+C =t-1+ t+1 B |cosx|<1であるが, S= -cos'x+cos.x-log(1+cos.x)+Ce (分母)キ0 からcos xキー1 よって,真数1+cosx は正 である。 |2 coS.x=tとおくと,-sinxdx=dtであるから sinx sinx -dx =-Cos°x dx 被積分関数を Isinx f(cos.x)sinx の形に変形。 1 Idt 1-t dt 1 ユー =--(log|1+|-log|1-t|)+C ニー 2 八1+t ast く 2 c- l0git 1-cosx -log- +C (*)||cosx|^1で(分母)キ0か 1+t - cos x ら cosxキ土1 よって,真数は正。 x tan 2 1 © sin20=2sin@cos@ =2(tanOcos 0)cos0 =2tanOcos°0 を利用。 1 であるから sinx 2tan) x C x tan 2 x "Cos?. tan 0 1-cos 0 dx -dx=log| tan +C (tan?- 2 から, 1+cos0 x tan 2 これは(*)と一致する。 x 次の不定積分を求めよ。 練習 223 ASS cosx+sin2x Jr sin?x (3) \sin'x tanxdx dx COS x C onIDU」 いろいろな関数の不定積分

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

27番(1)の問題についてです。 解答の意味を理解できません。 解答の解説をしてほしいです。 よく分からないのは以下の2点です。 1.具体的にどのような順序関係を与えたのか  (⊆なのか≦なのか他のものなのか) 2.解答の図位置にくるようなaは存在するのか

31. 定理 10.2:A=Bにより定義した関係は同値関係である。これを証明せよ。 30. 3個の要素をもつ互いに相似でない半順序集合はいくっあるか。それぞれ図を書け。 1 Aは上に有界か。(2) Aは下に有界か、3 spA) は存在するか、 25. (1) pを素数としたとき,(p,2)が極小元である。 26. (1) ただ1つの要素からなる集合が極小元である。 194 A=||zEQ, 8<せく15 第の 平修集合と全手集合 19s とおく。 4 inf(A) は存在するか。 (e) Bに最初の元があるか。 d) Bに最後の元があるか。 1) a) Bの極小元をすべて求めよ。 )Bの極大元をすべて求めよ。 2)を空でないBの全顧序部分集合のなす族。通に集合の包含関係で順序を与える。 a)の極大元をすべて求めよ。 4)の極小元をすべて求めよ。 相似な集合 (e) に最初の元があるか。 dに最後の元があるか。 102: A=Bにより定義した関係は同値関係である。これを好囲せよ 25. M = |2,3.4,…!とする。MXMにつぎのように順序を与える。. がeを割り切り、 bがd以下のとき,(a.b)% (c.d)とする。 (2) 極大元をすべて求めよ。 1)極小元をすべて求めよ。 補充問題の答 26. M=|2.3.4..」 に"ェはyを割り切る”で順序を与える。さらに、#をMの空でない全層を部。 集合のなす族。『に集合の包含関係で半順序を与える。 (1).rの極小元をすべて求めよ。 20(1) a) 317 (2) (al (b,(dのみ全順序集合である。 (6) 2>8 (c) 6<1 d 3>33 (2) .の極大元をすべて求めよ。 (6)415 (e) 5|| 1 4<2 12) 27.つぎの各命圏は真であるか偽であるか,偽である場合は反例をあげよ。 (1) 半順字集合Aが極大元』をただ1つもつならば, aは最後の元である。 (2) 有限半順序集合Aが極大元』をただ1つもつならば,aは最後の元である。 (3) 全序集合が極大元』をただ1つもつならば,aは最後の元である。 上界と下界 28. W=|1,2,…, 7,8|につぎのような単序を与える。 (4) 集合として(3)と同じ集合 2 d)(2,2)<(15, 15) 23. 住,,4)。 (2,4) 2,3) (1) Wの部分集合A=|4,5,7| を考える。 (1,4} (a) Aの上界集合を求めよ。 ) Aの下界集合を求めよ。 (2)Wの部分集合B=|2.3.61 を考える。 e) sup(A)は存在するか。 {3] dind(A)は存在するか。 24.(1) a) dとf (e)ない ある。 aが最後の元 (6)a Bの上界集合を求めよ。 () Bの下界集合を求めよ。 (3) Wの部分集合C=|1,2,4,7| を考える。 a) Cの上界集合を求めよ。 () Cの下界集合を求めよ。 12) (a) la,b.dl. la.b.e.fl. la, c.jl )ただ1つの要素からなる集合である。 lal.1bl,lel.Idi, lel,I/l. (e) ないd)ない e) sp(B)は存在するか。 inf(B) は存在するか。 le) sup(C)は存在するか。 indC) は存在するか。 pを素数としたとき, (p.2)が極小元である。 (2) 極大元はない。 29.有理数の集合Qに自然順序を与え。 た,…を任意の妻教列とすると、 in.np.ARm.…」 のタイプの集合が極大元である。

解決済み 回答数: 1