学年

教科

質問の種類

数学 大学生・専門学校生・社会人

 微分方程式についての質問です。  写真はある円の微分方程式を求める方法について2通りの説明をしています。  赤枠の部分がどのような過程で求まったのかが分かりません。  自分は △PTA∽△QPA ∴∠QPA=∠PTA=θ ∴AQ=PQtanθ だと思いました。 ... 続きを読む

(I-1図参照),この円群に属する円を任意にとり, その中心を, A(c,0) とすれ である。ところが, PA と PTは直交するから, I-1図からわかるように I- 第1章 微分方程式 2 平面上で、エ軸上に中心をもち, 半祐一定の長さょである回m. ば、この円の方程式は YA --y=r P(エ) P T A(c0) 0 X リ=ーr I-1図 (ェ-c)+ y° =r? である。ここで,定数cに種々の値を与えることによって,この円群に属士る すべての円の方程式が得られる。そこで, この(1)をいま考えている円群の方 程式という。また,定数cには任意の値を与えることができるから, cを任意 定数という.さて, この円群に属するすべての円が共通にもっている性質を求 めるために,方程式(1)から出発して任意定数cを含まない関係を求めよう。 そのために,(1)の両辺をェで微分すれば (z-c)+ y = 0 が得られる。そこで, (1) と (2) から文字cを消去すれば dy + y° = r? de が得られる。これが求めている共通性質であって,これは1階微分方程式での る。さて,I-1図のように,点 A(c.0)を中心とする円群に属する円を考え,て の上に任意の点P(x, y) をとり,点Pにおける接線を PT とすれば PQ? + AQ? = AP? =D r

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

データの分析です。 (3)がわかりません。教えてください!

あるクラスの生徒 40人について、100点満点のテ ストを行った。右の図は、テストの得点のヒストグ ラムである。 (1) 次のア]に当てはまるものを,下の0~ ●のうちから1つ選べ。 この40人のデータの第3四分位数が含まれる階 (人) 10 20 0 0 0 0 0 0 1(点) 級は、ア」である。 0 10点以上20点未満 0 40点以上50点未満 0 70 点以上80点未満 (2) 次のイコ ウ]に当てはまるものを、 右の図の0~0のうちから1つずつ選べ。ただし、 解答の順序は問わない。 このデータを箱ひげ図にまとめたとき,ヒストグ ラムと矛盾するものは、 ロウである。 0 20 点以上30点未満 0 50 点以上60点未満 0 80 点以上90 点未満 30 点以上40点未満 60 点以上70点未満 ● 90 点以上100点未満 0 0 10 20 30 40 50 60 0 0 (点) (3) 後日,このクラスで再試験を行ったところ,再 試験の得点の箱ひげ図は右の図のようになった。 次のa~cのうち、最初のテストの得点から再試 験の得点への変化の分析結果として、箱ひげ図と矛盾するものは、エ]である。 |]に当てはまるものを、次の0~0のうちから1つ選べ。 a どの生徒の得点も上がった。 6 10 20 0 0 50 0 (点) b 最初のテストの特点で下位-に入るすべての生徒の得点が上がった。 c 最初のテストの得点で下位-に入るすべての生徒の得点が下がった。 0 aのみ 0 bのみ 0 cのみ 0 aとb 0 aとc

回答募集中 回答数: 0