学年

教科

質問の種類

数学 大学生・専門学校生・社会人

図とか書いても 解答の ここで、のあとの解説が理解できないです、、 どなたか一から教えて欲しいです

72 第2章 関数 ( 1変数 ) 重要 例題 016 逆三角関数の性質 sin(Sin't+Cos't) = 1 を示せ。 指針 逆三角関数 Sin't Cost の定義を確認する 問題である。 これらはどちらも、閉区間 (0<x) (1) mil 重要 y4 関数 f の lim n→∞ [-1, 1] 上で定義された連続関数である。 そし て, Sin' は値域が [一であり、 Sin 11 0 x 0 指針 必 Cos t Cos't は値が [0, π] である。 これらを踏ま えて三角関数の定義と照らし合わせると, -1 解答 1 Sin' Cost がどこの角度を測っているか。 が、図のようにわかる。 [1] ここでは,tの符号によって角の測り方が変わるから三角関数の加法定理 sin(a+β)=sina cos β+ cosasinβ を使って機械的に解こう。 CHART 逆三角関数 三角関数の逆関数 x=siny y=Sin ¹x x=cos y y=Cos¹x x=tany⇔y=Tan'x 解答 加法定理により sin(Sin 't+Cos-lt)=sin(Sin't)cos(Cos-lt)+cos (Sin-1t)sin (Cos-'t) =t2+cos (Sin't) sin (Cos 't) 77 ここでより, cos(Sin-lt) 20であるから cos(int)=√1-sin'(Sin't)=√1-ゼ また,Costaより, sin (Cos 't) 20であるから を作 sin Cost)=√1-cos" (Cos 't)=√1 よって sin(Sin't+Cost)=t2+(√1-t2)=1 参考例えば, t>0 の場合, Cost と Sin't は, それぞれ右で図示され 角度を与える。 の正の向きから時計回りに測った角度である。 ただし Cos-'t は x 軸の正の向きから反時計回りに、Sin't y tsug y Mint Cost この図から、閉区間[0, 1] 上のすべての実数に対し、 Sin' + Cos = 2 となることがわかる。 0 t1x したがって sin(Sin-'t+Cos^'t)=sinz=1

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数Iの二次関数についての質問です。 ⑵について、頂点の座標が(p,2p−1)で表せるのはなぜですか? 分かる方いたら教えて欲しいです🙇‍♀️

(2) 放物線y=-x2+2x+1 を平行移動した曲線で, 原点を通り、頂点が 線 y=2x-1 上にある。 CHART & SOLUTION 放物線の平行移動 平行移動によってx”の係数は不変 x2の係数はそのままで、問題の条件により,基本形または一般形を利用する。 (1) 移動後の頂点や軸が与えられていないから,一般形からスタート。 平行移動してもx2の係数は変わらず2である。 (2)頂点に関する条件が与えられているから,基本形からスタート。 頂点(b,g)が直線 y=2x-1 上にある⇔g=2p-1 解答 (1) 求める放物線の方程式を y=2x2+bx+c とする。 放物線が2点 (1,1,2,0)を通るから b+c=-3, 26+c=-8 これを解いて 6=-5,c=2 よって 求める方程式は y=2x2-5x+2 (2) 求める放物線の頂点が直線 y=2x-1 上にあるから, 頂点の座標は (p, 2p-1) と表される。 よって, 求める方程式は y=-(x-p)2+2p-1 とされる。 放物線が原点 (0, 0) を通るから 立 基本 68.6g a 頂点や軸の位置はわか らないから,一般形で 考える。 infx軸との交点(2,0) が含まれているので,分解 形y=2(x-2)(x-β) から - スタートしてもよい。 -Cast of 頂点の座標を利用する から、基本形で考える。 (1) (2) f(x) CHARTE 軸と定 (1) f(x [1] (2)(1) 解答 (1) 0-(0-p)2+2p-1 すなわち が2-2p+1=0 ゆえに (p-1)²=0 これを解いて p=1 よって, 求める方程式は y=(x-1)2+1 (y=-x+2x でもよい) inf. (1) là y=2(x− p)²+q, (2) は y=-x2+bx として, 問題の条件から 未知数 q, bを求めることもできる。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数学青チャ1A例題59から 赤枠部分について、なぜ正の公約数を持つと有理数でないといえるのでしょうか? また、それをなぜ分数の形にするのでしょうか?

あり ない ない 基本 例題 59 √7 が無理数であることの証明 00000 √7 は無理数であることを証明せよ。ただしnを自然数とするとき, nが7の 倍数ならば, nは7の倍数であることを用いてよいものとする。 [ 類 九州大 ] 指針 無理数であることを直接証明することは難しい。 そこで, 前ページの例題と同様 直接がだめなら間接で 背理法 基本 58 4 解答 に従い 「無理数である」 = 「有理数でない」を,背理法で証明する。 つまり、√7 が有理数(すなわち 既約分数で表される)と仮定して矛盾を導く。・・・・・・・・・ [補足] 2つの自然数α, bが1以外に公約数をもたないとき, αとは互いに素である (数学 A 参照)といい, このときは既約分数である。 して る。 √7 が無理数でないと仮定すると, 1以外に正の公約数をもた ない自然数 α, b を用いて7 と表される。 a √7 は実数であり、無理 b このとき 両辺を2乗すると a=√76を用いて a2=762 ① でないと仮定しているか 有理数である。 この両辺を2乗すると よって, αは7の倍数であるから, a も 7の倍数である。 例題の「ただし書き」を いている。 ゆえに, cを自然数として, α = 7c と表される。 a2=49c2 ① ② から 762=49c2 すなわち 627c2d ② よって, 62 は7の倍数であるから, 6も7の倍数である。 ゆえに α ともは公約数7をもつ。 これも「ただし書き る。 これはaとbが1以外に公約数をもたないことに矛盾する。 したがって√7 は無理数である。

解決済み 回答数: 1