学年

教科

質問の種類

数学 大学生・専門学校生・社会人

【至急】帝京大学2021年数学の過去問です。 解説お願いしたいです🙇 どなたかお願いします🙏

〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答が有 理数となる場合には, 整数または既約分数の形で答えること。 (1) a+b+c= 2, a²+b²+c² = 6, ab+bc+ca= ア となる。 (2) a = as+ 2 4-√ 12 は . 1 1 1 +. a b C 1 1 1 + + a h² 1 オ である。 エ のとき、a2+1/2 ウ 〔2〕を4≦a≦4を満たす定数とする。 放物線y=x2+7x-a²+6a+17 ....... ①につ 4 いて,次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答 が有理数となる場合には, 整数または既約分数の形で答えること。 11/12のとき、 イ (3) 放物線 ① の頂点のx座標は ア であり, 放物線 ① の頂点のy座標の最小値 イ である。 また, 放物線①をx軸方向に-1, y 軸方向に2だけ平行移動した放物線を②とす であり, 放物線② の頂点のy座標の最大値 る。 放物線 ② の頂点のx座標は である放物線②をCとすると, C上 個ある。 オ ウ である。 y座標の最大値が の点(x,y) で,xが整数かつy<0となるものは は I エ 〔3〕 次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答が有 理数となる場合には, 整数または既約分数の形で答えること。 (1) kを定数とする。 xの2次方程式x^ー (k +10)x+(10k+1)=0が重解をもつんの値 イ である。 ただし, 1 とする。 は. ア ア (2) xの2次方程式x2-5x+2=0の2つの解をα, β とする。 また,xの2次方程式 x2+px+q=0(p,qは定数)の2つの解はα+2,β+2 である。 このとき, p+q= ウ である。 (3) 2次不等式x²8x330の解と, 不等式6< |x-al(a,bは定数)の解が一致 するとき, a= エ b= オ である。 〔4〕 △ABCにおいて, ∠BAC=2∠ACBである。 ∠BACの2等分線とBCとの交点を D とするとき, BD = 2, CD =3である。 次の にあてはまる数を求め, 解 答のみを解答欄に記入しなさい。 解答が有理数となる場合には, 整数または既約分数の 形で答えること。 (1) cos ∠ACD = ア ×ACである。 (2) AB= イ (3) ABCの面積は, 数, である。 ウ は最小の正の整数とする。 (4) △ABD の外接円の半径は, 2√ < I オ 3 である。 ただし、 となる。 ウ は有理

未解決 回答数: 1
数学 大学生・専門学校生・社会人

1番なのですが、何度やっても2/3 になります。 そもそも式の作り方が違うのでしょうか?

2023年度 「経済数学」 練習問題 (24) 5.3 ラグランジュの未定乗数法 ラグランジュの未定乗数法を用いてzあるいはuの極値を求めよ (24-1) z = xy x + 2y = 2 (242) z = x(y + 2) (24-3) z = x - 3y - xy (244) z = x + y - xy (245) z = 4x²-3x + 5xy-8y + 2y² (246) z = 4x² + xy + 4y² (247) z = a² + b² + c² (248) z = a + 2b + 4c (249) z = ab + bc + ca 1 (2410) z = : = (a³b³ + b³c³ + c³a³) (2411) z a³ + b + c (2412) u = xy + yz + zx-x-y-z (2413) u = 8x + 4y + 2z (2414) u = 2x + 4y + 6z (24-15) u = p + 2q + 3r (2416) u = 2a³3 +2b³ +2c³ ただし、a≠0,b ≠ 0c ≠ 0 O s.t. s.t. s.t. s.t. s.t. 8.t. s.t. s.t. s.t. 1 1 (24-1) z=(x = 1, y = 1=3) 1, 8.t. s.t. 8.t. s.t. s.t. s.t. ( 24-17 ) ある消費者の財 Q1 Q2 qs に関する効 u=q² + 2q² + 4 s.t. であるとし、 各財の価格が p1=2, p2=4、ps=8 あるとする。 このとき、この消費者のそれぞれの最 準 u を求めよ。 なおラグランジュ関数はLとおき よ。 (24) =0 O (24 - 7) z = 2(a = b = c = λ= }) (248) z = 42 (a = 2, b = 4, c = 8, λ = ¹1), Lλ = x + 2 y 2 = 0 =A₁ & 1² 11 2 X = ²/²/2 3 z = -42 (a = -2, b = -4, (24-9) 7= 3 (r = 1 c = -8, λ = ラグランジュ関数は L = xy + x(x122-2) この関数をx.g.入で偏微分してゼロとおくと L x = y, - ^. Ly = x - x = 0 h = 1 r = 1 1 = 21 2x+3y-2x=2 2(x-x)+3g=2

解決済み 回答数: 1