学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数1の一次不等式単元、 絶対値記号をxを場合分けして外す問題で、 やり方は分かっているのですが、 <2>の(1)や(2)の問題で場合訳をする際に 何故、x>3ではなく、 x ≧ 3 なのでしょうか? 逆に  何故、x ≦3ではなく、 x<3 なのでしょうか? 場合分けする... 続きを読む

[2] 次の式の絶対値記号をxの値によって場合分けしてはずせ。 (1) |x-3| (2) | 4x+8| ACTION 絶対値記号は、記号内の式の正負で場合分けしてはずせ 解法の手順 絶対値記号内の式値の 正負を考える。 32の結果と値の範囲を まとめて書く。 解答 [1] (1) √5= 2.236・・・ より √5-1>0 であるから Act 15-1|=√5-1 (2) = 3.14・・・ より, 3-π<0であるから |3-²|=-(3-²)=π-3 Act [2] (1) x-3の正負で場合分けすると (ア) x-3≧0 すなわち x≧3 のとき |x-3|=x-3 (イ) x-3 < 0 すなわち x<3のとき |x-3|=-(x-3)=-x+3 x-3 (ア)(イ)より |x-3| = -x+3 (2) 4x+8 の正負で場合分けすると (ア) 4x+8≧0 すなわち x≧-2 のとき |4x+8| = 4x+8 (イ) 4x+8 < 0 すなわち x <-2のとき |4x+8| = -(4x+8) = -4x-8 4.x +8 (ア), (イ)より 14x+81={- -4x-8 21 の符号に応じて絶対値 記号をはずす。 POINT (絶対値記号) (x≧0のとき) {-2x l-x (x<0のとき) (1) |x| = (x ≥ 3) (x<3) (x-2) (x-2) 絶対値記号内の値が正の 場合はそのままはずす。 絶対値記号内の値が負の 場合は, マイナスをつけ てはずす。 olas 絶対値記号内の式x-3 の正負で場合分けする。 等号は(ア), (イ) のどちらに 含めてもよい。 最後に結果をまとめる。 絶対値記号内の式4x+8 の正負で場合分けする。 最後に結果をまとめる (x≧αのとき) (2) x-a={x(x<①のとき)

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数3の微積分の問題です。 正解の記号を教えて頂きたいです( т т )

H-A 1. (合成関数の微分) 1. 関数 f(x,y)=x,x>0についてA 1. yx, 2. yx, 3. (logy)x³, 4. (log.x)x³, 5. x³, 6. (logy)aly, を求めよ。 とB=C 2. 関数 f(x,y)=x,x>0x=ty=1の合成関数のを求めよ。 1.12.flogt,3.1(1+logr), 4.r-log1,5.8-1 (1+logr), 6. 存在しない 3.g(r)=f(0<r<w) の極値を取る点を求めよ。 (1.1,2.c, 3.1/e, 4.2.5.極値なし) 4. 話は変わりますが lim の値は? 1.e, 2.1.3.1/e, 4.0, 5.存在しない 1+++0 2.合成関数の2階偏導関数) 関数 z=f(r) のr=√²+² との合成関数z= f(vx²+y²) の導関数について答えよ。 1. £.$****. (1. f(r), 2. f'x/r, 3. fy/r, 4. f/r, 5. f'x/2,6. f'y/2) 2. (3)² + (3)² =? (¹. (F², 2. (f)³²/r, 3. (f)²/7², 4. (f)²r, 5. #v³) 3. +=? (1.f″+ƒ', 2. f" + f/r, 3. f" + (x+y)/r. 4. f" + f²/7²,5. #v>) H-A3. (陰関数の微分1) 次の関係式で定まる陰関数の導関数を求めよ. 1. f(x,y)=a²x²+b²y²=0, (A₁-B: - CD - ycossin(オーナ) 2. ysinx=cos(x-y) (1.-200 sint-sin(x-g) . H-A4. (大・小2) 次の関数の極大 極小をしらべよ。 f(x,y)=2019-2²-xy-y²+2x-3y 1.x=y=0 となる点は、(1.(1,2),2.(1,-1), 3. (1,-2), 4. (1,1), 5. 絶対にない) 2. fufy-Con=Bである。 (1正の数, 2.負の数 3.0) 3.点AではCをとる. (1.極小値,2極大値 3. 不明な極値) 4. 極値の値は? (1.2021,2.2022, 3.20234.2024) 2.-s-sin(x-7) 3. ycosx-sin(x) 4.ない) sinx+sin(x-y) sin.x-sin (x-y)

回答募集中 回答数: 0