学年

教科

質問の種類

数学 大学生・専門学校生・社会人

ε-δ論法による証明がわかりません。 (1)の波線部の不等式がどこから出てくるのか教えていただきたいです。 ε/2Mというのはどこから出てきたんですか?

基本例題031-8 論法による基本定理の証明 下の指針の定理について, 以下の問いに答えよ。 (1) 下の, 関数の極限の性質の [2], および [3] を,e-8 論法を用いて証明せよ。 (2) 下,合成関数の極限をe-8 論法を用いて証明せよ。 指針定理関数の極限の性質(スロー(x)=(x)ノー 関数 f(x), g(x) および実数 α について, limf(x)=a, limg(x) =β とする。 [1] lim{kf(x) +1g(x)}=ka+1β (k, lは定数) x→a x→a [2] limf(x)g(x)=aB [the lim (1/(x) 定理 合成関数の極限 4179744571 x→a x→b YOU 関数 f(x), g(x) について, limf(x)=b, limg(x)=αとし, g(x)はx=6で連続とする。 このとき,合成関数 (gf) (x) について, lim (gf) (x)=α が成り立つ。会場 x→a x→a x→a x→a xx→a [3] lim x→a f(x) a g(x) B E-8 論法による証明であるから、 「 e を任意の正の実数とする」から始める。そして,これに 対応するの値を検討する。 次のような方針で証明を進める。 f(x) (1) 1 1 の極限を求める問題は、f(x) x- g(x) として g(x) g(x) る。 関数の値と極限値との差の絶対値を評価し,途中でどのような仮定が必要になるかを考 05.10 える。 So I had lot (2) 合成関数g (f(x)) の値を g (f(a)) に近づけるには,gの中にある f(x) をどの範囲で x→a == (ただし,β≠0) eを任意の正の実数とする。 limf(x) =α であるから, ある正の実数品。 が存在して, ()+6011-5 0<|x-a|<品。 であるすべてのxについて|f(x)-α|<s が f(a) に近づければよいかを考え,それに応じてxをどの範囲でαに近づけるか考える。 1o C (+18 解答 (1) 性質 [2] の証明 成り立つ。このとき,α-e<f(x)<α+ であるから |f(x)|≦max{|a-el, |a+c|} S3A/ ここで,M=max{|α-el, |α+el, |β|} とおく。 e≠0 より |a-el, late | の少なくとも一方は0でない から M>0 limf(x) =α であるから,ある正の実数 Ô が存在して E 0<|x-a|<ふであるすべてのxについて|f(x)-al< AMICIAS が成り立つ。 limg(x) =βであるから、 ある正の実数 82 が存在して 1 B を示す問題に帰着させ e-8 論法による証明の 開始。 Jel 4

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

物理の万有引力に関する質問です。 問1と問2は答えを出せたのですが、問3以降が分からず困っています。 どなたか分かる方がいらっしゃれば教えていただけると幸いです。 ちなみに、問1と問2に合っているか分からないですが、次のような答えになりました。 問1 mg=GMm/R... 続きを読む

問1 図1のように地上から,質量mの衛星を打ち上げて軌道に乗せることを考 える. 以下の問1~問5に全て解答しなさい. ただし, 地球は点Oを中心とす る密度一様な球体とし、 地球の半径をR, 地球の質量をM, 万有引力定数をG とする.また, 地球の自転による効果については考慮しない. 地上での重力加速度の大きさを R, M, G を用いて表しなさい. 問2 衛星を地上より鉛直上向きに速さ V。 で打ち上げて, 地球の中心から2Rの点 Aに達した時に速さが0になった. この時の速さ Vo を求めなさい. 問3 衛星が点Aに速さ0で達した直後, OAに垂直な方向に速さ VAに加速して, 点Aから地球の中心を通る延長線上のOB=6R となる点 B に到着した. この時 の速さ VA,及び, 点Bに到着した時の速さ VB を求めなさい. 問4 衛星が点B に達した直後, 速さ VC に加速して地球に対し半径 6R の等速円運 動をさせる. その時の速さと公転周期 Tc を求めなさい . 問5 地球に対し半径 6R の等速円運動をしている衛星の運動エネルギーK を用いて, この衛星がもつ力学的エネルギーを表しなさい. ただし, 万有引力による位置エ ネルギーの基準点は無限遠とする.

解決済み 回答数: 1