学年

教科

質問の種類

数学 大学生・専門学校生・社会人

多様体の接空間に関する基底定理の証明です。g(q)=∫〜と定義した関数を微積分学の基本定理を用いながら変形してg(q)=g(0)+∑gᵢuⁱと導出するのですが、これがうまくいきません。 自分は、g(q)の式をまず両辺tで微分して、次に両辺uⁱで積分して、最後に両辺tで積分... 続きを読む

12. Theorem.If{ = (x', , x") is a coordinate system in M at p, then its coordinate vectors d, lp, …… 0,l, forma basis for the tangent space T,(M); and D= E(x) 。 i=1 for all ve T(M). Proof. By the preceding remarks we can work solely on the coordinate neighborhood of G. Since u(c) = Othere is no loss of generality in assuming ど(p) = 0eR". Shrinking W if necessary gives E(W) = {qe R":|q| < } for some 8. Ifg is a smooth function on E(W) then for each 1 <isndefine og (tq) dt du g(9) = for all qe {(W). It follows using the fundamental theorem of calculus that g= g(0) + E&,u' on (W). Thus if fe &(M), setting g = f。' yields f= f(P) + Ex on U. Applying d/ax' gives f(p) = (f /0x)(P). Thus applying the tangent vector e to the formula gives (f) = 0+ E(x'(p) + E Ap)u(x) = E(Px). ず ax Since this holds for all f e &(M), the tangent vectors v and Z Ux') d,l, are equal. It remains to show that the coordinate vectors are linearly independent. But if ) a, o.l, = 0, then application to x' yields dxi 0=24 (P) = 2q d」= 4. In particular the (vector space) dimension of T,(M) is the same as the dimension of M.

未解決 回答数: 1
数学 大学生・専門学校生・社会人

青チャート数3 例題223(2)の問題で添付二枚目のように解いたのですが構いませんか🙇‍♀️添削お願い致します。

anx 指針>被積分関数が f(cos.c)sinx, S(sinx)cos.x の形 に変形できるときは, それぞれ なお, tan=tとおく方法もある。詳しくは次ページ参照。 371 次の不定積分を求めよ。 [sinx-sin'x 1+cosx dx -dx △ (2) (藤のやフ sinx |p.365 基本事項3 cOS.x=t, sinx=tとおく ことにより, 不定積分を計算することができる。 sinx-sin°x (1-sin'x)sinx cos x 7章 1+cosx 1+cos x sinx f(cosx)sinx の形 1+cosx 32 sinx 1 sin?x 1-cos?x *sinx - f(cos.x)sinx の形 sinx 解答 ) cos.x=tとおくと, -sinxdx=dtであるから cos?x [sinx-sin'x 12 -dt 1+t dx= 1+cosx *sinxdx= A 1+t 1+cos x t+1 1 nia --(-1+aro--+レー1ogl1+d|+C =t-1+ t+1 B |cosx|<1であるが, S= -cos'x+cos.x-log(1+cos.x)+Ce (分母)キ0 からcos xキー1 よって,真数1+cosx は正 である。 |2 coS.x=tとおくと,-sinxdx=dtであるから sinx sinx -dx =-Cos°x dx 被積分関数を Isinx f(cos.x)sinx の形に変形。 1 Idt 1-t dt 1 ユー =--(log|1+|-log|1-t|)+C ニー 2 八1+t ast く 2 c- l0git 1-cosx -log- +C (*)||cosx|^1で(分母)キ0か 1+t - cos x ら cosxキ土1 よって,真数は正。 x tan 2 1 © sin20=2sin@cos@ =2(tanOcos 0)cos0 =2tanOcos°0 を利用。 1 であるから sinx 2tan) x C x tan 2 x "Cos?. tan 0 1-cos 0 dx -dx=log| tan +C (tan?- 2 から, 1+cos0 x tan 2 これは(*)と一致する。 x 次の不定積分を求めよ。 練習 223 ASS cosx+sin2x Jr sin?x (3) \sin'x tanxdx dx COS x C onIDU」 いろいろな関数の不定積分

解決済み 回答数: 1