学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学検定3級の問題です 標本平均の標本分布とはなんですか? 解説の意味がわかりません 助けてください!

DE SAHN 問18 母平均 μ, 母分散をもつ母集団から,大きさn(≧2) の標本としてXi....,Xn を無作為抽出し,それらの標本平均X=-Xiを考える。 このとき, 標本平均の性 ni=1 質として、次の①~⑤のうちから最も適切なものを一つ選べ。 28 ① 標本平均は必ず母平均μ に近い値をとる。 ② 標本平均の標本分布の期待値は必ずμとなる。 ③ 標本平均の標本分布の分散は必ずとなる。 ④ 標本平均の標本分布は必ず正規分布になる。 標本平均の標本分布はnに依存しない。 問19 あるパン屋で製造されているあんパンの重さの平均μ (g) を調べるために, 10 個のあんパンの重さに基づき信頼度 (信頼係数) 95%の平均の信頼区間を求めるこ とにした。ただし,あんパンの重さは独立に平均 μ 標準偏差2の正規分布に従っ ていると仮定する。 このとき,次の I~ⅢIの記述を考えた。20000円 0002 I. 信頼度を95%から99% に変えると, 信頼区間の幅は狭くなる。 ため の II.重さを測るあんパンの個数を10個から50個に増やすと, 信頼区間の幅は狭 くなる。 comm Ⅲ. 見た目の小さいあんパンだけを10個集めると、必ず信頼区間の幅は狭くな る。 この記述 I~ⅢIに関して、次の①~⑤のうちから最も適切なものを一つ選べ。 29 ① Ⅰ のみ正しい ④ ⅠとⅡIのみ正しい Ⅱのみ正しい IとⅢのみ正しい ⅢIのみ正しい

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

これらの答えが知りたいです。 どなたかお願いします!

1. 偏りのない6面あるサイコロをn回投げる操作を考える.標本空間を Q={w1,...,wn; Wi ∈ {1,2,3,4,5,6},1<i<n} とする (上でwk はん回目の試行で出た目をあらわす) 部分集合 ACΩに対して, #A で集合Aの個数をあらわすとする. このとき はΩ上の確率となることを示せ . #A P(A) = 6n 2. 偏りのない4面あるダイスを1回投げる操作を考える.ここで標本空間を Q={1,2,3,4} とし,その上の確率Pを事象ACΩに対して P(A)= = #A で定める. (1) 事象 A = {1,2},B={2,3}, C'={1,3} に対して, A と B B と C およびCと Aは互いに独立であることを示せ . (2) 3つの事象 A,B,Cは独立でないことを示せ . (3) どれもΩ ではない任意の3つの事象は独立にならないことを示せ(ヒント: 任 意のA'c Ωが取り得る値の集合と, それらの積であらわされる数の集合を比較せ よ). 3. 関数 X を二項分布 B(n, 1/2) にしたがう確率変数とする. (1) Xが値k ∈ {0,1,...,n} をとる確率P(X=k) の値が最大となるときのんの値 を求めよ. (2) 上で求めた最大値をM(n) とするとき, limn→∞ M(n)=0となることを示せ . 関数 X をパラメータα>0の指数分布にしたがう確率変数とする. (3) X が xo > 0 以下となる確率P(X ≤ xo) が 1/2となるとき, To の値を求めよ. (4) x>0 に対して, limh+o P(x ≤X≤ x + h) の値を求めよ.

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の[4-1](1)についてですが示すまでの理解はできるんですが三角不等式を用いて示すっていうのがよく分からないです💦 ここはどういう感じの証明を書けばいいのでしょうか? また、他の問題もどうやって解くのか教えてほしいです! よろしくお願いします🙇‍♂️

[4-1] {an}neN>{bn}neN CR, a,be R, と仮定し,0に対し、 をみたす Ne, Ne∈Nが与えられているとする. このとき,次を示せ . (1) |6| ≤ 1 + |6| for all n∈Nf.. (Hint. bn= (bm-b) +6 に対して三角不等式を用いよ) THE (2)>0 に対し, 61 (E) = 1+ |a|+|b| と、 Jan - all ≤efor alline N, 16-6 ≤e for all neNA. (3) (2) において ana, bnb asn→∞ (従って, |0| ≤1+|6|,|0-al≤e1 (c), 10-bel (e) for all n ∈NN.. (従って, anbabasn→∞ が成り立つ.) (3) (2) において, 1 on lanbn-abl≤lan-all bnl + |al|bn-b|≤e for all ne NN. E = jare. >0,Ne=max{N1, Na(e), Na(e)} EN とおく [4-2] [41] において, {bn}neN CR\{0}, b ∈ R\{0} とするとき, ([4-1] の (前提の)記 号の下で)次を示せ . (1) Eo= = 10/11 > >0とおくと befor alline No. (Hint. b= (b-bm) +6m に対して三角不等式を用いよ.) (2)>0に対し,1 (€)=260,Ne=max { Neo, Na(e)}EN とおくと, 1 ≤ —, |b₁-b| ≤ €₁(e) for all n € N₁₂. NN・ |bn| E0 27/0 b Ibn-b) ≤ 1 | 12/23 - 12/10 = <e for all n E NN bn 16m-61 |b||b₂| asn→∞ が成り立つ) [bn] ≤ 1+|bl

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

解ける人解いて教えてもらえたりしませんか?😭 解き方を知りたいです。

[5] 行列 A = の固有値と固有ベクトルを求める。 すなわち, Aæ= 入z を満たす実数 入と, 入に対応するべ クトルæ≠0を求める. Ax = 入 は 50 = [57] と変形される. 仮定よりæ≠0 であるので, [56] の逆行列は [58] が導かれるからである。従って, [56] の [60] は [61] であるこ 0 [[90]] 8 [63] [64] = 0 が得られる. これを解いて,固有値入= [65] 10 2 なら, とがわかる. [56] の逆行列が [59] ならばæ www これより、 固有方程式 入 + [62]入一 を得る. 3 4 [56] [57] 選択肢 0 (A-X) 1 (A - λx) ⑤0 (※スカラーの零) ⑥6 0 (※ ベクトル) 存在する [58] |~ [61] 選択肢 (同じ番号を繰り返し用いて良い) ⑩ 行列式 ① 対称行列 ② 逆行列 ⑥⑥ 存在しない 77零 以下, 求める固有ベクトルをæ= ⑩ ●入= [65] のとき, Aæ= 入æは唯一つの方程式æ1+ |[67] [68] (2) ● 入 = - [66] のとき,同様にして, 固有ベクトルæ= ち [69] 選択肢 次のページへ続く. (A – AI) ⑦○ 21 とおく. X2 ① 100000 に対する固有ベクトルはæ= 169 (これを」 とおく) である. [68] [67] [67] [68] ② (3) X [67] ③ 直交行列 ⑧ 零ベクトル 1 [70] [71]| -3 A [68] 3 32=0 と同値となる。 従って, 固有値入 = [65] 2 4 x (9) I ④ 転置行列 ⑨ 零行列 ③ (これを2 とおく) を得る. [66] 5 [68] |[67]

未解決 回答数: 0