学年

教科

質問の種類

数学 大学生・専門学校生・社会人

例4.28について質問です。(1)のfx^2+fy^2=、、の式までは分かっているのですがそこからいきなり(2)のラプラシアンの式がどうやって出るのかわからないです。どうか教えてください。

19:06 3/3 変数変換を学んだついでに 4.2.7. 変数変換におけるラプラシアンの表示. : 全単射, C2-級, = -1 とする. 関数 f(x) : D → R, g(s) : UR は f(x)=g(y(z)) = g(s) = f (d(s)) をみたしているとする. [5]. f(x,y) = √√√x² + y² = r = g(r,0). (**) of fi = oni, dxi ga = asa のように書く. 添字の,上下, 文字スタイルで区別がある. ここでは∇f = (....fi....), ∇sg = (..., ga,...) は行ベクトル . 逆写像のヤコビ行列は Þ : ((R”, s = (… .., sª,...) > ) U → D ( C (R¹, x = (..., x², ...))) となる.このとき連鎖律より次の関係式が得られる. f(x) = g(s(x)) * x³ THALT, fi = Σa ga$iº. & 5K füi = Σa ((Σ3 9aß$?) sº + 9asi). B (1) ▽zf = ∇sg.d.同様に∇sg = ∇f.do. (2) Axf := Σi fü = Σa‚ß Jaß(Vrsª, ▼+$³) + Σa 9aArsª. 2² 8² Ər² 20² 9回目終わり 例 4.2.8. R2 の極座標でのラプラシアンの表示 重 : UC (R2, (1,0)) → DC (R2, (x,y)), I = 重-1 πr TO cos -r sin 0 d = Yr yo sin 0 rcos o TI Ty cos o sin 1 T dy = = (d)-1 200 - sine cose) == (-²2) r 注: r = x2 +¥2,0 = tan -1 y の微分はしなくても煙は求められる. I (1) (fæ, fy) = (gr,90) · dV. (fz, fy) = (gr, ¼90) U, U = (- 特に fz + f = g + /1/129. 注: d では1列+2列 (1 行 ⊥2 行ではない). d では 1行2行 (1列+2列ではない). 8² a2 8² 12 10 + + + əx² 042 Ər² r² 20² rar + はそもそも考えない. d = (st) at (= (dd) -1): 第α行を ▽ zsa とする行列 lai (4) A = + U= 問題. R3 の極座標でのラプラシアンの表示. (x,y,z)=d(r,0,4)= (rsin A cos o, r sin A sin p, rcos E ↓ = Φ-1 とする. (1) d = (dd) を求めよ. (2) (fx,fu, fz) = (gr, 1,90, sin694) U, Uは直交行列, と書けることを示せ . cos 0 (3) Ar = ², A0 = A = 0 を示せ . r2 sin 0 8² 182 + Ər-2 2002 / sin A cos y sin A sin y cos A cos o cos A sin - siny cos 1 2 20 cos a + rar r2 sin 000 cos o sin 0 sino cos0 72 sin20042 cos 0 - sin 0 0 は直交行列と書ける. を示せ. | .d=Uの2行目に !を3行目に • itc-lms.ecc.u-tokyo.ac.jp 3 rsin 0 を掛けたもの. Ć

未解決 回答数: 0
数学 大学生・専門学校生・社会人

中等教育教科法数学②です! 難しいです、。。 ①もあって、、教えてもらえると嬉しいです、。 よろしくお願いします🙇🏻‍♀️💦

中等教科教育法数学 ⅡI 第2設題 |1| 3 地点 P, Q, R があり,PからQを通る Rまでの道のりは 7200 [m] で, P から Q までの道のりと Q からRまでの道のりは等しい. A,B,Cの3人が、 次のようにしてPからQまで手紙を配達した : 2 • A は10時にPを毎分 75 [m] の速さでQに向かって出発し, B に出会い, 手紙を渡してすぐに 向きを変えて来た道を同じ速さでPに戻った. 15 ・BはAより何分か遅れてQを毎分90 [m] の速さでPに向かって出発し, A に出会い, 手紙を 渡してすぐに向きを変えて来た道を同じ速さでRに向かった. そして,出発点 Q を通過した後 Cに出会い, 手紙を渡してすぐに向きを変えて来た道を同じ速さでQに戻った. ・CはBより何分か遅れて R を毎分125 [m] の速さでQに向かって出発し, B に出会い, 手紙を 受取りすぐに向きを変えて来た道を同じ速さでRに戻り, 手紙は R に届いた. 3人が手紙の受け渡しを終えてそれぞれの出発点に戻るまでに, AとBの歩いた時間は等しく, A と Cの歩いた道のりは等しかったという. (1) 手紙が R に届いた時刻を求めよ. (2) B が Q を出発した時刻, C が R を出発した時刻をそれぞれ求めよ. 次のメモを持ってあなたは宝島を目指した: 1 5 5 5 5 5 5 5 5 5 5 島の中央に桃栗, 柿の木が立っている野原がある. . 桃の木から栗の木に向かって歩数を数えて歩く. 栗の木に着いたら右へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. 桃の木から柿の木に向かって歩数を数えて歩く. 柿の木に着いたら左へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる . ・ 2つの杭のちょうど真ん中の位置に宝が埋まっている. 宝島に渡り目的の野原に着いたあなたは愕然とした. 桃の木だけが枯れてしまったようで跡形もなく なっていた. あなたは宝を掘り当てることができるかを論ぜよ. 紙を筒状に丸めて半径r高さんの直円筒をつくる. 図のように, 直円筒の高さ方向に平行で, 円筒の中心を通る長方形 ABCD を考 える. この長方形の頂点 B, D を通り, この長方形に垂直な平面 P で直円筒を切る. (1) 平面 P 上の, 切り口で囲まれた部分の面積を求めよ. (2) 直円筒を切ってできた2つの部分をそれぞれ広げて平面とし たとき, この平面上で切り口はどのような曲線になっているか論 ぜよ. 4 長さ1の正方格子を考える. 格子点上に頂点にもつ正5角形は存在しないことを示せ . 4桁の自然数nについて, n3 の値の下4桁がnとなるものを全て求めよ. B CA D 6 縁が楕円の形をしたビリヤード台を考える. この楕円の1つの焦点から玉を突くと, 縁に当たり跳ね 返った玉はもう一方の焦点を通過する. これを示せ .

未解決 回答数: 1
数学 大学生・専門学校生・社会人

この問題の[4-1](1)についてですが示すまでの理解はできるんですが三角不等式を用いて示すっていうのがよく分からないです💦 ここはどういう感じの証明を書けばいいのでしょうか? また、他の問題もどうやって解くのか教えてほしいです! よろしくお願いします🙇‍♂️

[4-1] {an}neN>{bn}neN CR, a,be R, と仮定し,0に対し、 をみたす Ne, Ne∈Nが与えられているとする. このとき,次を示せ . (1) |6| ≤ 1 + |6| for all n∈Nf.. (Hint. bn= (bm-b) +6 に対して三角不等式を用いよ) THE (2)>0 に対し, 61 (E) = 1+ |a|+|b| と、 Jan - all ≤efor alline N, 16-6 ≤e for all neNA. (3) (2) において ana, bnb asn→∞ (従って, |0| ≤1+|6|,|0-al≤e1 (c), 10-bel (e) for all n ∈NN.. (従って, anbabasn→∞ が成り立つ.) (3) (2) において, 1 on lanbn-abl≤lan-all bnl + |al|bn-b|≤e for all ne NN. E = jare. >0,Ne=max{N1, Na(e), Na(e)} EN とおく [4-2] [41] において, {bn}neN CR\{0}, b ∈ R\{0} とするとき, ([4-1] の (前提の)記 号の下で)次を示せ . (1) Eo= = 10/11 > >0とおくと befor alline No. (Hint. b= (b-bm) +6m に対して三角不等式を用いよ.) (2)>0に対し,1 (€)=260,Ne=max { Neo, Na(e)}EN とおくと, 1 ≤ —, |b₁-b| ≤ €₁(e) for all n € N₁₂. NN・ |bn| E0 27/0 b Ibn-b) ≤ 1 | 12/23 - 12/10 = <e for all n E NN bn 16m-61 |b||b₂| asn→∞ が成り立つ) [bn] ≤ 1+|bl

回答募集中 回答数: 0