学年

教科

質問の種類

数学 大学生・専門学校生・社会人

青チャートの式と曲線についてです。 赤枠で囲った部分は、図を書けば一目瞭然ですが、式から求めるにはどうすれば良いのでしょうか? よろしくお願いします🙇

[重要] 例題 接線の交点の軌跡 楕円x2+4y2=4について,楕円の外部の点P(a,b)から,この楕円に引いた2 本の接線が直交するような点Pの軌跡を求めよ。 [類 お茶の水大] 指針点Pを通る直線y=m(x-a)+6が,楕円x2+4y²=4に接するための条件は, x2+4{m(x-a)+b=4の判別式Dについて, D=0が成り立つことである。 また、D=0の解が接線の傾きを与えるから,直交傾きの積が-1 と 解と係数の関 係を利用する。 なお,接線がx軸に垂直な場合は別に調べる。 [参考] 次ページでは, 楕円の補助円を利用する解法も紹介している。 CHART 直交する接線 D = 0, (傾きの積)=-1の活用 解答 [1] a≠±2のとき, 点Pを通る接線の方程式は y=m(x-a)+b とおける これを楕円の方程式に代入して整理すると (4m²+1)x2+8m(b-ma)x+4(b-ma)2-4=0 (*) このxの2次方程式の判別式をDとすると D=0 ここで 12/2=16m²(b-ma)-(4m²+1){4(b-ma)-4} TRETJI =-4(b-ma)^2+4(4m²+1) =4{(4-α²)m²+2abm-62+1} ゆえに (4-a²)m²+2abm-b²+1=0 .... IE の2次方程式 ①の2つの解を α, β とすると αβ=1 - 62+1 すなわち 4-a² よって a²+b=5, a+±z [2] α=±2のとき, 直交する2本の接線はx=±2,y=±1| 863 NO (複号任意) の組で, その交点の座標は =-1 842 88-11+x20=1+ (2, 1), (2, -1), (-2, 1), (-2, -1) にある 円x2+y2=5 -√5 基本63 √√5 6754 11 -2 0 |-1 -√5 x 2 +4y²=4 判別式 P(a, b) √5 2, x (*) (b-ma) のまま扱うと, 計算がしやすい。 直交傾きの積が1 < 解と係数の関係 2次方程式 px2+gx+r=0 について =-1が成り立つとき, q^-4pr=q²+4p2> 0 となり、 異なる2つの実数 解をもつ。 [1], [2] から 求める軌跡は 68+(-3) [参考] m の2次方程式 ① が異なる2つの実数解をもつことは, 楕円の外部の点から2本の接線が 引けることから明らかであるが (解答の図参照), これは次のようにして示される。 D' mの2次方程式 ① の判別式をDとすると 2/2=(ab)²-(4-q²)(−62+1)=a²+46²-4 点Pは楕円の外部にあるから 4 +46²4(>が成り立つ理由はか.125 参照。) ゆえに D'>0 なお、一般に楕円の直交する接線の交点の軌跡は円になる。この円を準円という。 に接する2本の直線 2章 8 2次曲線の接線

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

先生が答えをくれません。 一応自分なりの答えは出したのですが、数学(計算も)あまり得意ではなく、自身がありません。 模範解答を作成していただきたく、質問を作成させていただきました。 何卒宜しくお願い致します。

No1 1. 次の関数fが I = [a,b]上可積分であることを仮定し、積分の値ff を求めよ. (i) f(x) = x, I = [0,a] (ii) f(x) = x2, I = [0,a] (iii) f(x) = e, I = [0, a] No2 1. (二進小数) 実数 r∈ [0, 1] が 1 1 T= r = 012 +0222 +..., (ここで a1,a2,a3=0,1) と表示されるとき、 r = 0.a1a203・・・ と書いて、 これをの二進数表示という. た だし、末尾に1が続く場合は切り上げて、 0 の続く表示としておく. たとえば、 12 の二進数表示は0.1 となる. 11 ならば、 0.01 である. (1) 1/3を二進数表示せよ. No3 1. 次の二重積分の値を求めよ. (1) (2²³ +y³)dxdy, 2) 10 (ポージ) andy, (2) No4 2. 次の3重積分を求めよ. (1) [√√ (x² + y² + 2²)²drdydz, (V = {(x,y,z)|0≤x,y,z ≤1}) (V = {(x, y, z)|x² + y² + 2² <a²}) fff, z²dxdydz, J 1 +9323 1. 次の二重積分の値を求めよ. offe (2³+y³)dxdy, (2) (2² - y²)dxdy, (2) (D={(x,y)|0≤x,y≤1}) (D={(x,y)| -1≤x≤1,1≦y<2}) (D={(x,y)|0≤x,y<1}) (D={(x,y)| -1≤x≤1, 1≤y≤ 2}) 2. 次の3重積分を求めよ. (1¹) ff (2² (22+y^2 +22)2dxdydz, (V = {(x,y,z)(0 ≤x,y,z <1}) [[[³drdydz, (V = {(x, y, z) x² + y² + 2² ≤a²})

未解決 回答数: 0