学年

教科

質問の種類

数学 大学生・専門学校生・社会人

多様体の接空間に関する基底定理の証明です。g(q)=∫〜と定義した関数を微積分学の基本定理を用いながら変形してg(q)=g(0)+∑gᵢuⁱと導出するのですが、これがうまくいきません。 自分は、g(q)の式をまず両辺tで微分して、次に両辺uⁱで積分して、最後に両辺tで積分... 続きを読む

12. Theorem.If{ = (x', , x") is a coordinate system in M at p, then its coordinate vectors d, lp, …… 0,l, forma basis for the tangent space T,(M); and D= E(x) 。 i=1 for all ve T(M). Proof. By the preceding remarks we can work solely on the coordinate neighborhood of G. Since u(c) = Othere is no loss of generality in assuming ど(p) = 0eR". Shrinking W if necessary gives E(W) = {qe R":|q| < } for some 8. Ifg is a smooth function on E(W) then for each 1 <isndefine og (tq) dt du g(9) = for all qe {(W). It follows using the fundamental theorem of calculus that g= g(0) + E&,u' on (W). Thus if fe &(M), setting g = f。' yields f= f(P) + Ex on U. Applying d/ax' gives f(p) = (f /0x)(P). Thus applying the tangent vector e to the formula gives (f) = 0+ E(x'(p) + E Ap)u(x) = E(Px). ず ax Since this holds for all f e &(M), the tangent vectors v and Z Ux') d,l, are equal. It remains to show that the coordinate vectors are linearly independent. But if ) a, o.l, = 0, then application to x' yields dxi 0=24 (P) = 2q d」= 4. In particular the (vector space) dimension of T,(M) is the same as the dimension of M.

未解決 回答数: 1
数学 大学生・専門学校生・社会人

経済学の質問ですが、内容が数学のものでしたのでこの場を借りて質問させて頂きました。文章にある割引利得の数式の意味がわからなく、そのためにある補足説明も読みましたが、数学が苦手な私は数列と無限級数などざっくり説明されても分かりませんでした。もし誰か出来たら、写真上の文章をも... 続きを読む

られたらこちら 済学でよく用いられる方法は, 引利得の総和 (以下単に, 割利得 ガンマ, 小文字) に対して6万円の金が1年後には利子がついて! 1つを採用し, 繰り返し囚人のジレンマ、 略が対戦するとき、 毎回のゲームで行動の組 (C, C) が選択される。 将来利得が割り引かれる原因は, いろいろなものが考えられる。 たとえば, 金銭的な利得の場合, 預金の利子率y(ギリシャ文字の らこちらも協力に戻る戦略である。 列といい う。とく ように, 将来利得の割引 数列とし で公差 また が対戦するとき、 毎回のゲームで行動の組 (C,C) が選択さい このとき、 2人のブプレイヤーは利得5の無限列。 できる 5,5, に 数 を得る。このような利得の無限列の評価として, ゲーム理論ちの 済学でよく用いられる方法は, 割引村得の総和 (以下単に, 割引IBe 和という)である。割引利得の考え方は, 将来の利得を現在時点。 評価する場合,額面より割り引いて評価するというものである。た とえば、1年後にもらえる1万円を, 現在価値に換算して0.7万円 の和 と書 an が無 と評価することである。 この割引の係数0.7 のことを将来利得の割 引因子という。割引因子の値が大きいほど, 将来利得を現在利得 と同程度に高く評価する。 利得5の無限列 (5,5,)の割引利得科 は, 6 (ギリシャ文字のデルタ, 小文字) を将来利得の割引因子とする とき,等比級数の和の公式 ( ds ④) より, と 5+56+ 58 + 5 と計算される。 ここで, 6 (0<6<1) である。 1-6 ガンマ, 小文字) に対して8万円の預金が1年後には利子が 142 第7章 繰り返しゲー( 済がま

未解決 回答数: 1
数学 大学生・専門学校生・社会人

ウォリスの公式の証明についてです。 1枚目の写真の問10が分かりません。 2枚目の写真の様に考えてみたのですが行き詰まって、他のアイディアが思い浮かばびません。 教えて下さい。

前節においては有限区間における有界な関数の積分を考えた。 この節では, $3 広義積分 113 n-1 In = -In-2 (n22). n In -Lh-3. In-e (m-2 0=x/2, h = 1 より (26) を得る。 n(n-2). n(n-2). T。 n …3-1 (n 奇数) ……4-2 ( 偶数) nENに対して, n!!:= M- n-3. n 2T 1-2 n-Ln-3. れ-2 3 とする。このとき, (26) は次のようにかける。 「h 年2 Tw2 (n 偶数) 2 こ4TA M-L-2.In-4 n In = 1-4 u (まスラ0) (n 奇数)。 0<とく要 = h-」.h-2 市困> さて,(O, t/2) で、sin?n+1x ゆえに, 上記の結果より, i. A sin2n x < sin?2n-1 x であるから, I2n+1 < 12n < Izn-1. (:0<qnk<) (n=,t,2, (2n-1)!! π 2 よって, 1 (2n-1)!! π 1 (27) 2n+1 (2n-1)!! 2 2n (2n-1)!! よって れ )1u (28) 21+1 t to 2n+1 1 2 1 2 2n+1 2n T Dah π ゆえに しはさ4うち。里さり、 2 2 = lim 2n. J(2n-1)!!]? (2n(29) Jen Len 方on-! =T n→0 これから, i(に)T 所(an-)! =STE 1 Vェ= lim 22n(n!)? = lim Vn (2n)! (30) ウォリス CWallis) これをワリスの公式という. ニこて Vn (2n-1)!! 1em) n→0 n→0 (2n)! (nコ (2n)!! -@n)-2n-2).4 =An-cn-t) 2·よ 問9 Vれ (n→). An! 問 10 (29) から次の式(これもワリスの公式という)を導け。 1 コ 1 (2n-2)? 1 2 lim {1 22 (2n)? m→0 22 42 62 $3 広義積分

解決済み 回答数: 1