学年

教科

質問の種類

数学 大学生・専門学校生・社会人

ルートの扱い方を復習していたらよくわからなかったのですが まず、ルートの中が0以上になることはわかるのですが、今までなんとなくしか理解していなかったので教えていただきたいです。 ア→これは右辺が0以上を条件にしていますが、何故ルートの中が0位上と言うのを確認していないの... 続きを読む

-●3 ルートがらみの方程式 不等式を解く (京都産大 (ア)(2.z-2 =1-2.zを満たす実数zの値は である。 (イ)V5-z<z+1を解け。 (ウ)不等式(3-2.r 22.zー1を解け。 (龍谷大·理系(推薦) (東京都市大) ルートがらみの方程式·不等式のことを,無理方程式·無理不生 図形問題を解くときにも現れる 式と言う。教科書的には数Ⅲの内容だが, 図形問題を解くときにも(解法によっては)現れること るので,ここで練習しておくことにしよう。 解くときの注意点 *2乗すると同値性がくずれる. 例えば, A=B=→ A?=B? であるが, A?=B?#A=Ra+ (例えば、 A=-2, B=2のとき, A?=B'だが, A=Bではない). また, AZB# A?2 33であ る(例えば、A=1, B=-2のときを考えよ).「AZB → AB'」という同値変形ができるの は,A20かつB20のときである。両辺が0以上なら, 2乗しても同値である。 *ルートの中は0以上であり, 実際にどのようにするかは, 以下の解答で 2乗してルートを解消するが, その際に注意が必要である. の値は0以上である。 ■解答 ○0のとき,右辺20により 2.ェーェ20であるから, ルートの 中は0以上であることが保証 (ア)(2.z-22 =1-2.r → 2.ェー2=(1-2.x)? 0 かつ1-2.r20 のを整理すると, 5.z?-6.r+1=0 .(r-1)(5.r-1)=0 1 れる。 1-2.r20を満たすェを求めて, x=- 5 コェ+1>/5-ェ N0により, エ+1>0. (イ)/5-r<ェ+1 → 5-x z0かつ ェ+1>0かつ5-ェ<(r+1)? -1<zS5 かつ 22+3.x-4>0 -1<z<5 かつ (エ+4)(r-1)>0 コ-1<r<5のとき, エ+4>0 (ウ)/3-2r >2.r-1…① のとき, 3-2.cN0 3 IS- 2 1° 2かつ 2.z-1<0, つまり ェくうのとき, ①は成り立つ。 介日の右辺の符号で場合分け. @ のとき,①の右辺<0なら①は成 2 1 3 2° 2かつ 2.z-120, つまり 名zハ%のとき, ①の両辺を2乗しても 立。 2 2 同値で、 3-2.z2(2ェ-1)? : 2.22-ェ-1ハ0 4.z2-2.ェ-2<0 :(2ェ+1)(e-1)<0 1であり。zs とから、ら1 3 よって - 2 1°, 2°により, 答えは, x<1 3 演習題(解答は p.55) (ア)方程式(z?+/z +z-l=0を解け。 (イ)不等式V3.?-12 Sz+4を満たすェの範囲を求めよ。 (ウ)不等式(4.ーz" >3-xを満たすェの範囲を求めよ。 (札幌学院大) (明治大·理工) ルートの中は0以上, な; どに注意して解いてい く。 (学習院大·理) 3-2 1 く-を満たす』の値の範囲は (エ) 2r である。 (関西医大)

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

なんでこれ唐突にfx同士をかけてるんですか?

| 2次方程式ar-(a+1)x-a-3=0が, -1<x<0, 1<x<2の範囲でそれる。 OO0。 196 基本 例題126 2次方程式の解と数の大小 p.191 基本事項] つの実数解をもつように, 定数aの値の範囲を定めよ。 位 指針> (x)=ar?ー(a+1)x-a-3(aキ0) としてグラ フをイメージすると, 問題の条件を満たすには リ=f(x) のグラフが右の図のようになればよい。 すなわち f(-1) とf(0) が異符号 [a>0] la<り) y=f(x) 0 0 =fx) かつ f(1)とf(2) が異符号 である。aの連立不等式 を解く。 CHART 解の存在範囲 f(p)f(q)<0なら pとqの間に解(交点)あれ 解答 42次方程式であるから。 (x* の係数)キ0に注意 f(x)=ax°-(a+1)x-a-3とする。ただし, aキ0 題意を満たすための条件は, 放物線y=f(x) が -1<x<0, 1<x<2の範囲でそれぞれx軸と1点で交わることである。 f(-1)f(0)<0 かつ f(1)f(2)<0 f(-1)=a·(-1)*ー(a+1)·(-1)-a-3=a-2, 『すなわち 注意 指針のグラフから るように、a>0 (グラフが に凸),a<0(グラフが上 凸)いずれの場合も F(-1)f(0)<0かつ プ(1)f(2)<0 が、題意を満たす条件でお よって, a>0のとき、べ のとき などと場合がけを て進める必要はない ここで f(0)=-a-3, f(1)=a·1°-(a+1)·1-a-3=-a-4, f(2)=a·2°-(a+1)·2-a-3=a-5 f(-1)f(0)<0から ゆえに (a+3)(a-2)>0 a<-3, 2<a また, f(1)f(2) <0から よって の ゆえに (a+4)(a-5)>0 a<-4, 5<a 0.② の共通範囲を求めて よって a<-4, 5<a これはαキ0 を満たす。 -4 -3 5 に

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

1枚目の2行目から4行目の式変形でλの符号が変わるのはどうしてなんですか?? あと、2枚目の1番上「つまり〜」のところでなぜその不等式が成り立つのかわかりません どなたか教えてください🙇‍♂️🙇‍♂️🙇‍♂️

の値という意味です。ここで7- と 7」 は次のように定めます。 7_(み,o) = 人 ニー1 またはgo, > 01 7, (9,c) = {訴 ニ 1 または o, > 0} 、)の選択の根拠について以下に説明します。式05-16にラグランジュ未定乗数 法を適用してみます。 目的関数を7/(o) とすると、新しい変数Xとんを使って、ラグ ランジュ関数は次のようになります。 し2 5 の gg久一7 og 本 このときのKKT条件は次のようになります。 5の 三0, 0 ラグランジュ関数の>についての勾配を取って= 0とおく と、次のようになります。 V7(@)二和ッール=テ0 さらに成分に注目すると次のようになります。 V7(o), + Aw = 太く0 ここで、KKT条件を見るとa。>0のときは太=0である必要があり、太を自由に動 かせるのはo,=0のときに限定されます。 まずはoz 0のときについて考えると、ヵ,=1または=-1であることに注意して、 この式の両辺に, を掛けて整理すると次を得ます。 %V7()。 >ーハ (娘=ー1) みV7(@), 本(りー 炊にg,>0だとすると wV7(o), = ー 7 放っ 最適解においては「=-1、またはcu>0」ならばyrVチ(o), > -ハであり、「 gw

解決済み 回答数: 1