学年

教科

質問の種類

数学 大学生・専門学校生・社会人

最大、最小問題についてです。 鉛筆の()で囲った部分は、解答するときに書かなければ何がまずいのでしょうか? よろしくお願いします🙇

例題 6-10(最大・最小①) A 67 大値を求めよ。 がすべて正で x+y+z=a (aは定数) のとき,積 xy'z の最 謝 解説 関数 f(x,y)において最大値・最小値の存在および最大・最小とな る点が極大・極小であることが明らかな場合がある。しかも極大・極小となる 点の候補がごく限られているならば,ただちに最大・最小が求まる。 [解答] x+y+z=aより, z = a-x-y z=a-x-y>0より,x+y<a よって,x,y が満たすべき条件は, x>0,y>0, x+y <a この不等式によって表される領域をDとおく。 O a また, x'y'z=xy (a-x-y)=axy-xyxy* f(x,y)=axy-xy-x'y^ とおく。 f(x, y) はD上の連続関数で,かつ, D の境界上で値は0となり最大とはな らない。 よって, D の内部で必ず最大となる。 したがって, 最大となる点は停 留点である。 fx(x, y) =2axy-3x2y3-2xy=xy(2a-3x-2y) fy(x, y)=3ax2y2-3x3y²-4x²y3=x²y² (3a-3x-4y) fx(x, y) =0 かつ f(x, y) =0 とすると, 2a-3x-2y=0 かつ 3a-3x-4y=0 囲える 真界を含む 有界閉集合上の 連続関数は Maxとminをもつ これを解くと, x=- a 3' v=0 y a よって,最大となる点の候補は (11/27) a 3' のみであるから, f(x, y) は a (x,y) a (17.12において最大となる。 a a a6 最大値は, 3'2 432

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

年齢算の問題です。青ラインを引いた点についてなのですが、何故5人の年齢の和を半分に分けたものが1グループの年齢になるのですか?😭 この部分をもう少し詳しく教えて頂けませんでしょうか。

牛断昇 Who と When が大事! 11 頻出度★★☆☆☆ 重要度★★☆☆☆コスパ★★★☆☆ 現在および過去や未来の年齢について考える問題です。 誰のいつの年齢なのか を見失わないようにしましょう。 1年でみんな平等に1歳ずつ歳をとりますよ。 特別区Ⅰ類2006 PLAY1 年齢算の典型的な問題 両親と3姉妹の5人家族がいる。両親の年齢の和は、現在は3姉妹の年齢 の和の3倍であるが、6年後には3姉妹の年齢の和の2倍になる。また、4年 前には父親と三女の年齢の和が、母親,長女及び次女の年齢の和と等しかった とすると、現在の母親, 長女及び次女の年齢の和はどれか。 1.42 2.44 3.46 4.48 5.50 現在の年齢をxで表して、まずは6年後の年齢の関係で方程式を 立ててみよう! まず、前半の条件について、現在の3姉妹の年齢の和をxとすると、両親の 年齢の和は3xと表せます。 6年後には、両親は2人で12, 3姉妹は3人で18だけ年齢の和は大きくな り、このときの年齢の和について、次のように方程式を立てます。 6x2 6×3. 3x+12=2(x+18) m 3姉妹の6年後 両親の6年後. 3x+12=2x+36 ∴.x = 24 よって、現在の3姉妹の年齢の和は24、両親の年齢の和は3×24=72と なり、5人の年齢の和は 72 + 24 96 とわかります。 み歯

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

整数の問題です。play2の?がふってある部分について、いまいち何を言ってるのかよく分かりません…。もう少し噛み砕いて教えて頂くことはできますか?😭😭

77 特別区Ⅰ類20 PLAY 2 最大公約数と最小公倍数の問題 3つの自然数 14, 63, n は、 最大公約数が 7 で、 最小公倍数が882である。 nが300より小さいとき、 自然数nは全部で何個か。 1. 218 2. 318 最大公約数や最小公倍数の性質は理解できたかな? 3. 418 14 = 7 x 2 63=7 n = 7 882 = 7×2×32×7 72×2×32 は300より小さい自然数であることを、しっかり頭に入れて解きましょう。 14,63, n の最大公約数が 7 なので、 n は 7 を約数に持つ、 つまり、7の 倍数ですから、n=7m (mは整数) とおきます。 ×32 4. 518 また、 14 = 7 x 2.63 = 7× 32 ですから、これらを次のように並べ、最 小公倍数が882 = 2 × 32 x 72 になることを考えます。 xm ← -最小公倍数 最小公倍数の 882 は、 14,63, nのすべてで 割り切れる最小の数ですから、これらの数の素因 数 (素数の約数) をすべて含んでいることになり ますね。 しかし、 14, 63 の素因数に 「7」は1つしか ありませんので、最小公倍数 882 の素因数に 「7」 が2つあるということは、nの素因数に 「7」が 2つあることになります。 そうすると、とりあえず、m=7 であれば、 n=7×7となり、 条件を満たすことがわかり ますが、 m には、 その他の 「2×32」の全部ま たは一部が因数に含まれていても、 最小公倍数は 変わりませんので、n は次のような数が考えられ ます。 そうなの?? 5. 618 ない 71882 71126. 2118 319 3 たとえば、 6と9の最小公 倍数 18 は、次のように、 それぞれの素因数をすべて 含む最小の数だよね。 6=2x3 9 = 3×3 18=2×3×3 たとえば、n=7²×2× 3294 とかでも、次の ように素因数は882に含 まれるでしょ!? 14 = 7×2 63 = 7×32 294 = 7²×2×3 882=7²×2×32 m = m m m m m 4 正解

解決済み 回答数: 1