学年

教科

質問の種類

数学 大学生・専門学校生・社会人

最大、最小問題についてです。 鉛筆の()で囲った部分は、解答するときに書かなければ何がまずいのでしょうか? よろしくお願いします🙇

例題 6-10(最大・最小①) A 67 大値を求めよ。 がすべて正で x+y+z=a (aは定数) のとき,積 xy'z の最 謝 解説 関数 f(x,y)において最大値・最小値の存在および最大・最小とな る点が極大・極小であることが明らかな場合がある。しかも極大・極小となる 点の候補がごく限られているならば,ただちに最大・最小が求まる。 [解答] x+y+z=aより, z = a-x-y z=a-x-y>0より,x+y<a よって,x,y が満たすべき条件は, x>0,y>0, x+y <a この不等式によって表される領域をDとおく。 O a また, x'y'z=xy (a-x-y)=axy-xyxy* f(x,y)=axy-xy-x'y^ とおく。 f(x, y) はD上の連続関数で,かつ, D の境界上で値は0となり最大とはな らない。 よって, D の内部で必ず最大となる。 したがって, 最大となる点は停 留点である。 fx(x, y) =2axy-3x2y3-2xy=xy(2a-3x-2y) fy(x, y)=3ax2y2-3x3y²-4x²y3=x²y² (3a-3x-4y) fx(x, y) =0 かつ f(x, y) =0 とすると, 2a-3x-2y=0 かつ 3a-3x-4y=0 囲える 真界を含む 有界閉集合上の 連続関数は Maxとminをもつ これを解くと, x=- a 3' v=0 y a よって,最大となる点の候補は (11/27) a 3' のみであるから, f(x, y) は a (x,y) a (17.12において最大となる。 a a a6 最大値は, 3'2 432

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

増減表についてです。 赤枠で囲んだ部分のプラスマイナスを判定する良い方法を教えていただきたいです。 できれば簡単な方法でお願いします🤲

2 第1章 1変数の微分積分 例題1 (関数のグラフ, 数列) x を非負の実数,r0r<1 を満たす実数とし, 関数f(x) を f(x)=xr* と定義する。 このとき、 以下の問いに答えよ。 df (1) f(x) の導関数 および第2次導関数 dx d2f dx2 を求めよ。 (2) f(x)の増減表を書き、関数y=f(x)のグラフの概形を描け。 (3) n を正の整数とし, 数列 {a} の一般項を an=f(n-1) により定義 する。このとき,初項から第n項までの和を求めよ。 <東北大学工学部〉 ◆アドバイス! (ax)' = a *loga 証明は簡単! 解答 (1) f(x)=xr* より f'(x)=1·r*+x.r*logr= (xlogr+1)r* ・〔答〕 公式: また f" (x) = logror*+(x logr+1)*logr = logr(xlogr+2)r* ・〔答〕 (2) f'(x) = (xlogr+1)*= 0 とすると 1 x= (>0) logr f" (x) = logr(xlogr+2)*=0 とすると x=- 2 logr (> logr よって, 増減および凹凸は次のようになる。 x f'(x) f" (x) 1 2 (+8) logr logr + 0 - 0 + y=α とおくと logy = loga =x loga 両辺を微分すると y y'=loga ..y'=aloga f" (x) 凹凸: f" (x) ・f'(x) の変化 f" (x) > 0 接線の傾き ⇒接線の傾きが増加 グラフは下に凸 y=f(x) したがって (3) an= k=1 この S= SS rs= 2 f(x) 0 rlogr logr 2 2r logr logr (0)

解決済み 回答数: 2