学年

教科

質問の種類

数学 大学生・専門学校生・社会人

わかる方教えてくださいお願いします。

レポート作成上の注意: 1.名前と学籍番号を書くこと。(成績処理の都合) 2.ファイル名は「Report4」とするのが好ましい。(全角文字はバグの原因になる)(成績処理の都合) 3. 採点者が読みやすい文字で書くこと。(採点の都合) 4.問題文は書き写さない。可能な限り一枚の(明るい) pdf にまとめること。(pdf 以外は減点します)(採点の都合) 3 *3 -1<zS1のとき log(1 + z) = r となることが知られている。たとえばェ=1のとき 2 4 5 1 log 2 = 1- 2 1 1 3 4 となりェ=1/2のとき log3- log2 = log(1 + 1/2) = 1 2 3 4 5 となる。 課題、関数 f(z) = log(1 + z) を考える。 となることを数学的帰納法を用いて証明せよ。 fo) (0) (2) f(x)のェ=0におけるテイラー多項式 P,(r) = f(0) + f'(0)r + 2! n を求めよ。 n! (3) 0SS1とする。f(z) のn+1次の剰余項 Rn+1(x)を考える。テイラーの定理を用いて lim Ra+1(x) = 0 を示せ。ここでn+1次の剰余項 R+1(z) とはf(x) - P,(z) のことである。 補足:(3) の主張は、0冬ぉS1のとき f(z) = lim (P.(z) + Rn+1(r)) = lim P,(z) = f(0) + f(0)x+ 2! f"(O。 f)(0) n! 2→ となることを意味する。 注意:多くの参考文献では、f(z) のn次の剰余項 R,(z)(= f(z) - P,-1(z)を考えている。注意すること。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

問題2の(3)の増減表を見て最大値を判断する方法がいまいち分かりません。 特になぜ2つに分け、0~1/√2の時tが最大になるのかが分かりません。 分かる方いらっしゃいましたらご教授よろしくお願いします。

旨還8 suugakuk |団 gidaisuugaku-k 団 30b3eigopdf 団 2b3eigopdf |団 31b3eigopdf |回 sennkouksyoukel 回 gdalsuugm 恒 ソン 本 〇の 谷 ⑨ | file7//G7Users/81704/Desktop/sinngaku/nagaoka/gidai_suugaku-kakomon pd 支 寺 』 7 69 | 計上炊 一| 庫人⑨⑳ |必川回 ペラた合わせる 軸 ベジ表示 | 人 音声で読み上Fげる 妥 トドO飼加請記 (けり)スー2である人確系 ア(ス 三2) を求めなさい、 (2) メニ1 である確率 P(X = 1) を求めなさい. (3) え の期待値 /(X) を求めなさい. 間題2 xy平面において, 原点 O を中心とする半径 1 の円を C とする. z 軸上に点 T(。.0).0 </ ご1をどら| 点貞を通る直線 7 と円 ど との交点を AB とする. ただし, 直線 / は点 O ) を通らな上間較 AOAB の面積を ぐ とするとき, II (1) 直線 と点 O の距離を , とするとき,ヵの取りうる値の範囲を # で表しなさ 2⑫) 前間の ヵを用いて ぐ を表しなさい. (3) 8 の最大値 7/(/) を7:で表しなさい. 問題3 微分方程式 > のy %/ 旧 |ア 2 十 4zヶ一 ll を考える.zニ@ とするとき, 下の間いに答えなさい、. 科 (1) 2 2天上UM び 間II (ソフ) グ ここに入力して検索 愉 旧人た 2 2 と MEUARIUI

解決済み 回答数: 1
3/3