学年

教科

質問の種類

数学 大学生・専門学校生・社会人

二次関数の問題です。 解答のなみなみ線部分がわかりません。なぜ頂点のx座標がこの範囲にあるとするのでしょうか。他の場合分けが不要な理由がわからないです。お願いします

m 各) 8 2次関数の最大・最小/定義域が動く場合 a を実数とする. 定義域が α ≦x≦a +4 である関数f(x)=-x-4-6の最大値は α の関数で あるので,これをM (α) と表す. 同じく, 最小値をm (a) と表す. M (α), m (α) を求め b=M(a), b=m(α) のグラフを ab平面に (別々に)書け. (名古屋学院大) 最大・最小となる候補を利用 前問は,定義域が一定区間に決まっていて、 関数の方が変化したが, 本間は、関数の方が決まっていて、定義域の方が動く問題である。とは言っても,前問と同様に解くこ とができる.ここでは,前間と違うアプローチを紹介しよう。(なお,これらの解法は, 関数と定義域が ともに変化するときも通用する。) 左ページの①~⑦のグラフから分かるように,y=d(xp)+gのグラフが下に凸の場合, ・区間α ≦x≦B における最小値は, x=pが区間内にあれば, 頂点のy座標 q そうでなければ,区間の端点での値f(α), f (B) のうちの小さい方 ・区間α ≦x≦B における最大値は,区間の端点での値f(α), f (B) のうちの大きい方 である。結局,「最大値や最小値になる可能性のある点は,頂点と両端点の3つのみ」であるから, 「頂点のy座標(頂点が区間内にあるとき), および区間の端点のy座標からなる3つのグラフを描い ておき,最も高いところをたどったものが最大値のグラフ, 最も低いところをたどったものが最小 値のグラフである」 これは, グラフが下に凸な場合のみならず, 上に凸な場合についても成り立つ. 解答 y=f(x)のグラフは上に凸である.f(z)=-(x+2)²−2(a≦x≦a+4) であるから、頂点の座標がa≦x≦at4 にあるとき (as−2≦a+4), 6≦a≦2のとき, M(α)=f(-2)=-2 すなわち, それ以外のとき, M(α)=max{f(a), f(a+4)} つぎに f(x) の最小値は定義域の端点で取るから, m (a)=min{f(a), f(a+4)} ここで, f(a)=-(a+2) 2-2 f(a+4)=-{(a+4)+2}2-2=-(α+6) ²-2 であるから, b= f(a), b=f(a+4) のグラフは図1のようになる. よって, b=M(α), b=m(α) のグラフは, 図 2, 図3の太線である. bto 図3 bto 図 2-6 -2 1 -6 -4 -20. a M. -6 b=f(a+4) b=f(a) b=-2 b=-(a+2)²—2 b=-(a+6)-2 a -2 -6 -4 b=-(a+2)²X -2 max {p,q}は,pg のうちの大 きい方 (小さくない方) の値を表 (1 < す (min{p,g}は,p,gのうち の小さい方 (大きくない方) の値 を表す) MAR -6 ←一般にb=f (a+4) のグラフは, b=f(α)のグラフをα軸方向に -4だけ平行移動したものである. (p.32, 51) MX-2-5 b=-(a+6)²-2 08 演習題(解答は p.57 ) (ア) f(x)=x2+2x+2a≦x≦a+1における最大値をM, 最小値をm とする。 | のとき最小値 M-m=1を満たすaの値は であり, M-mはa= をとる。 2次関数のグラフ ち書き、その交点! (星城大 一部省略) (イ)/ 関数f(x)=x2-2xla≦x≦a+1 (a≧0) における最大値g(α)を求めよ. またg(α) を最小にする α を求めよ. (明星大) (ア) 7,08 のどちら の解法で解いてもよい ろう. (イ) 最大値の候補を活 用しよう. 4

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

後1週間後に受験を控えているのですが志望校の過去問の答えが公表されてなくて困ってます。赤本も出てないです。なのでできれば解答解説、せめて解答だけでも教えて下さい。お願いします。

[III] 1辺が1の正三角形 ABCにおいて, 辺BC, CA, AB 上にそれぞれ点D, E, Fをとる。 ここで, BD = p, CE = q, AF =rとし, 0<p<1, 0 <q<1,0<r<1とする。また,直線 (8) (1) 中文本ー AD と直線 BE の交点をGとし, ADEF の面積をSs とする。 e o ene 1 u ovitni 次の問いに答えよ。 [I]次の問いに答えよ。 (1) ACDE の面積を p, qを用いて表せ、また, Sをp, g, r を用いて表せ。 deiddus d Baal t (1) 0SSで, y= sin? ェ+6sin z cos.z +7cos"zの最大値と最小値を求めよ。 (2) CG をp, q, CA, TH を用いて表せ、 (2) 点Pがェ軸上の原点にある. コインを投げて, 表が出たらPをェ軸上, 正の方向に1だけ (3) 直線 CF が点Gを通るときのァをP, qを用いて表せ。 移動させ,裏が出たらPを負の方向に1だけ移動させる。コインを8回投げるときに, 8回 とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 (4) r= ad m 1 目でPがはじめて原点に戻ってくる確率を求めよ。 () r=と とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 do (3) 整式 P(z) を-4-2で割ると余りがェー1,z?-2a-3で割ると余りが3z+1,?-1で ed ha otdimi dd ce ow 割ると余りがェー7である. P(z) をポー6z?+11z-6で割ったときの余りを求めよ。 O (4) a」 = 1, an+1 = abe Jedl volud liotmi1go ofqpg smo an によって定められる数列{am} がある.このとき, {an}の一般項を he bnd b) 4a, +5 vel evd noenon don 求めよ。 0geigtabmatm o 6 m shi sigmyO nnio adT (5) 不等式 2"<9637 < 20+1 をみたす整数nを求めよ, ただし, 必要であればlog1o2 =D 0.3010, de mO n blo a b log1o3 = 0.4771を利用せよ。 o o smd o o agnig エ+1 o gdhos lbaoh o d d dnodeab amn o 20d anichb bomd p [II」 4,6を正の定数とする。f(z) = al+ 1|+b -1」 とし, S(z) = - とおく 1 dO bom bi Tashi Jao d dip boboano als anwamduc) n0 次の問いに答えよ。 (1) a=1,6=2の場合,関数y= S(z) のグラフを描け. n dto u TO 20m TO (2) 0<a<bの場合, 関数y =D f(z)の最小値を求めよ,d aag t o 1-4 S0 (3) a= 1,6=2の場合,-2<z< -1において, S(z) をェの整式で表せ。 (4) 関数y=S(z)が偶関数であるための a,bの満たすべき条件を求めよ。 (5) 0<a<bの場合,関数y= S(a) の最小値を求めよ. bh got o o sl gndhai anew yad) ro dw m0 d do ow w

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

教えてください!全然分かりません!

位角と見上げた角度で表して考えることにした。 水平面での角度であり, 例えば, 北東の位置の方位角は 45°である。 見上げた角度は飛行機を見上げたときの角度と さ西 視線の方向 し,例えば、視線の方向と水平面に平行な面でで きる角度が_50-のとき, 見上げた角度は「50°で あるとする (図1)。 50° 以下の会話文を読んで, 次の問1~問3に答え 見上げた角度 なさい。ただし, 観測をしている間は, 飛行機は 一定の速さで一直線上に進み, 高度は変わらない ものとする。また, 目の高さは考えず, 高度は水 水平面 図1 平面からの高さとする。 達也さん「方位角120° の地点 Aの上空を飛行機が飛んでいるとき,見上げた角度は 30°だった。その後,方位角.90°の地点Bの上空を飛行機が飛んでいるときは、 見上げた角度は 45° だったよ。」 四Om 静香さん「学校の地点を0として上空から見た図をつくると図2のようになるね。飛 行機の進行方向の方位角は, 図2の直線を点0を通るように平行移動したと きの進行方向の位置の方位角になるから, この Zxの大きさを求めればわか るんじゃないかな。」 達也さん「じゃあ, まず飛行機の高度をん (m)としよう。飛行機が通過する地点 A, B の上空をそれぞれ P, Qとすると図3のようになるね。」 静香さん「△OAP, △OBQは直角三角形だから, OB=h(m), OA= ア le (m) だね。」 達也さん「図4のように, Aから南北の直線に垂線をひいてその交点をH, Bから HA に垂線をひいてHAとの交点をLとしよう。 すると, HA=| イ |h (m) となるね。これで, Zrの大きさが求められそうだ。」

回答募集中 回答数: 0