学年

教科

質問の種類

数学 大学生・専門学校生・社会人

1番なのですが、何度やっても2/3 になります。 そもそも式の作り方が違うのでしょうか?

2023年度 「経済数学」 練習問題 (24) 5.3 ラグランジュの未定乗数法 ラグランジュの未定乗数法を用いてzあるいはuの極値を求めよ (24-1) z = xy x + 2y = 2 (242) z = x(y + 2) (24-3) z = x - 3y - xy (244) z = x + y - xy (245) z = 4x²-3x + 5xy-8y + 2y² (246) z = 4x² + xy + 4y² (247) z = a² + b² + c² (248) z = a + 2b + 4c (249) z = ab + bc + ca 1 (2410) z = : = (a³b³ + b³c³ + c³a³) (2411) z a³ + b + c (2412) u = xy + yz + zx-x-y-z (2413) u = 8x + 4y + 2z (2414) u = 2x + 4y + 6z (24-15) u = p + 2q + 3r (2416) u = 2a³3 +2b³ +2c³ ただし、a≠0,b ≠ 0c ≠ 0 O s.t. s.t. s.t. s.t. s.t. 8.t. s.t. s.t. s.t. 1 1 (24-1) z=(x = 1, y = 1=3) 1, 8.t. s.t. 8.t. s.t. s.t. s.t. ( 24-17 ) ある消費者の財 Q1 Q2 qs に関する効 u=q² + 2q² + 4 s.t. であるとし、 各財の価格が p1=2, p2=4、ps=8 あるとする。 このとき、この消費者のそれぞれの最 準 u を求めよ。 なおラグランジュ関数はLとおき よ。 (24) =0 O (24 - 7) z = 2(a = b = c = λ= }) (248) z = 42 (a = 2, b = 4, c = 8, λ = ¹1), Lλ = x + 2 y 2 = 0 =A₁ & 1² 11 2 X = ²/²/2 3 z = -42 (a = -2, b = -4, (24-9) 7= 3 (r = 1 c = -8, λ = ラグランジュ関数は L = xy + x(x122-2) この関数をx.g.入で偏微分してゼロとおくと L x = y, - ^. Ly = x - x = 0 h = 1 r = 1 1 = 21 2x+3y-2x=2 2(x-x)+3g=2

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

黄色い蛍光色の部分に関して 1.なぜこのように言い換えができるのか 2.なぜこの確率が1/kなのか 以上のことがよくわかっていません。 わかる方お願いします🤲

る. 【基礎0.10.6】 (1993AIME 問8 ) Sは6個の元からなる集合とする. Sのふたつの部 分集合 A, B を選びS = AUB とする方法は何通り あるか ただし AnB≠中でもよく、 またAとB を交換しただけのものは同一の方法とみなす.例え ば A={a,c},B={b,c,d,e,f} と A = {b,c,d,e, f}, B = {a, c} は同じとみなす. 解答n=#S=6とする. S=AUB のとき、各 s∈Sは, s∈A-B,s∈B-A, a∈ANB の3通 りの可能性がある. だから (A,B) と (B, A) を区別 して数えるとき, A, B の選び方は3通りある. ま たA=BとなるのはA=B=Sの場合に限る. し たがって (A,B) = (B, A) とみなす場合, その場合 3-1 の数は, +1=365 通りとなり、これが求め 2 る答である. 第 0.10.2 項 確率と期待値 起り得るすべての場合を分母として,問題になっ ている事柄が起きる場合の比をその確率という. 例えば、ある事柄が起こった場合賞金 a(z) 円 がもらえる場合が起きる確率をP(x) として, す 48 の必要十分条件は、 1回目のくじで (k-1) 位以上 だった (k-1) 人のいずれよりも2回目のくじで上 位になること, いいかえると, 1回目のくじで位 以内のk人の中で2回目のくじが1位であることで であるので 求める期待値は ある。 この確率は N k=1 である. 有限集合 【基礎0.10.8】 (1994JMO 本選問5) Nを正の整数とする. 1 から Nまでの数字を一つず つ書いたくじがあり, N人でこのくじを引けば1位 からN位までの順位をつけることができる. N人 でこのくじ引きを2回行い、 次のようにして景品を 与える人を決めることにする. 「ある人Aに対して、 1回目と2回目の順位の双 方がともにAより上位である人Bがいる場合には Aには景品を与えない. そのようなBがいない場 合に限りAに景品を与える. 例えば、 1回目で1位 を引いた人は2回目が何位であっても景品をもら える」 このとき、景品をもらえる人数の期待値を求めよ. ただしくじはあらかじめよくかきまぜてあり、2回 目のくじ引きの前にもう一度よくかきまぜるものと する. また「景品をもらえる人数の期待値」とは, そ れぞれの場合が起こる確率とその場合に景品をもら える人数を掛けた値を、全部の場合について足し合 わせたものである. 解答 1回目のくじでk位の人が景品をもらうため とする. もしbi がnで割り切れるなら, { (1,02.... } が求める部分集合である. そこで、どのbiもn で割り切れないとする。これらをnで割ったときの 余りは 1,2,... n-1 のどれかであるから、 鳩の巣原 理によりnで割ったあまりが等しい2数が存在す る. それらをbi, bj (i < j) とする. すると It n bj-bi = Qi+1 + ai+2 + ... + aj で割り切れるから, {ai+1, Oi+2..... aj} が求め

解決済み 回答数: 1