学年

教科

質問の種類

数学 大学生・専門学校生・社会人

証明の部分です! +1次の小行列式(またはその定数倍)の1個または2個の和であり、の所が分かりません。

列に関する同様の操作を列基本変形という。すなわち (1) Aの2つの列を入れ換える (2) Aの1つの列をc倍する (c≠0) (3) Aの1つの列に他の列のc倍を加える(cは任意の数) 行基本変形と列基本変形をあわせて基本変形という。 次の定理が成り立つことは, 容易に確かめられる。 列基本変形 22.3 基本変形は可逆な操作であり, 行列 A が ある基本変形に よってBに移るならば, 行列 Bもある基本変形によってAに移る。 定理 22.4 行列 A に任意の基本変形を施しても, 階数は変わらない。 証明 行列Aに上の6種類の基本変形のいずれかを施してBに変わった とする。 このときAとBの階数について r(B) ≤ r(A) ① が成り立つことを証明しよう。 AとBをmxn行列,r(A) = r とする。 1) r = m または r = n の場合は,(B)≦rであり,① が成り立つ。 2) 上記以外の場合. A の r + 1 次の小行列式はすべて0である。基 本変形後の行列Bの任意の +1次の小行列式は,変形前の行列Aのr +1次の小行列式 (またはその定数倍)の1個または2個の和であり, した がって 0 である。よって,系 22.2によりr (B) < r +1 となり,① が成り 立つ. さて、定理 22.3により基本変形は可逆な操作であるから,BをAに移 す基本変形が存在する。この変形についても①と同様のことがいえるから r(A) ≤ r(B) ② ①,②より(B) = r (A), すなわちAとBの階数は同じである。 ◇ 任意の行 標準形 準的な形に変形するこ まずA=0のとき ることはない。 次に 列の入れ換えにより, 0m 倍すれば,Aは - の形となる。 次に A ぞれ引くと,(2,1), 列から第1列の a12′ (14) 成分が0とな 注意1 上の A' から き出しという。 ここで*印の成 の入れ換えにより

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

テキストには写真の(2.13)と(2.15)より(2.15)式の右辺、左辺の定数項について求められるとしていますが、求め方が分かりません。どのように考えた場合定数項について求められるかを教えてください

}) (0) で .11) xx-th-1² tr 1 n-1 (2.12) Page bi age 171 EN (T 20 君のこと Page +1)= 172 l を上昇階乗ベキと呼ぶ。 この両者をあわせて, 階乗ベキと呼ぶことにする。 2.3 スターリング数 2.2節で学習したように、 階乗ベキは差分演算のなかで有効な計算手段 である。 ここでは,スターリング (Stirling *3) 数を利用して下降階乗ベ キュ”と単項式”の関係を学習する。 ここでnは2以上の自然数とし ておく。 実際には、下降階乗ベキを多項式で表すこと, 単項式を下降階 乗ベキの一次結合で表すことを問題意識とする。 まず、前者については x² = x² +Nn-1,nxn-1 +...+₁,nx = Σnj,n x² in (2.13) j=0 と表せる。ここで,Vn,n=1,70,n=0, さらにnjin=0,j>nであり, 7j,n は漸化式 In=zn+in-1,n n - njn+1=nj-1,n nnjin, 1≤j≤n x² (x-1) {[ (x-1) (x-2) * \\ { XL-{h+1) +2) (x −(n+1)+1) (2.14) を満たす。実際,zn+1=cℓ.(x-n) であるから、この式の両辺をライ プニッツの公式 *4 を利用して回微分すると, 積の微妙で、()は2階 (xn+¹)(i) = (x²)(i). (x − n) + j(x²)(i-1)³025 (2.15) を得る。2.13) から (215) の左辺の定数項は, j! 7jn+1 であり, (2.15) の右辺の定数項は-nj! nijn+j.(j-1)! nj-1 である。 したがって、 う! で割って比較することで, (2.14) が導かれる。 また,後者については, 第2章 差分法 | 37 n xn-¹ +...+ñ₁, x² = Σnk,n x² k=0 x. ?jn+の区間の生き残り処理する? (2.16) と表せる。 ここで, in,n=1,70,n=0, さらに ik,n=0,knであ り kn は漸化式 *3 James Stirling, 1692-1770, スコットランド, スターリングによって書かれた ものに [163] などがある。 *4 1.4.2の定理 1.4を参照のこと。 > (x^²+1) = x^² + Mn₁n₁₁ X²

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(カ)が成り立つから、4点B、C、E、Fは同一戦場にあるというのがわからないです。また※はなぜ成り立つのでしょうか?詳しく解説お願いしたいです🙇‍♀️

(2) ABC の頂点Aから辺BC (またはその延長)に下ろした垂線と辺BC (ま たはその延長) の交点をD, 頂点Bから辺CA (またはその延長)に下ろした 垂線と辺CA(またはその延長)の交点をE,頂点Cから辺AB(またはその延 長)に下ろした垂線と辺AB (またはその延長) の交点をFとする。 そして 直 線 AD, BE, CF の交点, すなわち垂心をHとする。 X 頂点Aを,D,E,F がそれぞれ辺 BC, CA, AB 上 (ただし, 3点A,B, Cを除く) にあるように動かすとき, つねに次の関係式が成り立つことがわかった。 AFX AB=AEX AC ..(*) 太郎さんと花子さんの会話を読んで、 次の問いに答えよ。 (ii) ●AB=12 ●AC = 8 ●AE = 6 ●AF=4 したがって 太郎 : このソフトでは, 実際の線分の長さも表示されるね。 花子:確かに(*) の関係式が成り立ちそうだね。 太郎 頂点Aを動かしてもつねに成り立つのかな。 が成り立つから 4点 B C E, F は同一円周上にある。 O ∠BFE=∠CEF ② <FBC + ∠ ECB = 180° F ⑩ 中点連結定理 ②方べきの定理 HE カ については,最も適当なものを、次の①~③のうちから一つ選べ。 î によって、 関係式(*)は頂点Aを動かしても成り立つ。 ⒸAFXFH = AEXEH ② BHxHF=CH×HE B' D キ については,最も適当なものを、次の①~③のうちから一つ選べ。 F, ① <BFC = ∠BEC ③ <FBE + ∠FCE =180° (次の⑩~③のうち、頂点Aを, 3点D, E, F がそれぞれ辺BC, CA, AB上 (ただし, 3点 A, B, C を除く) にあるように動かすとき、つねに成 り立つ関係式として正しいものを一つ選べ。 ク ① 三平方の定理 ③ 接線と弦の作る角の定理 (iv) 頂点Aを再び動かすと、 下の図のように AB=CB, BD:DC=4:1となった。 A POOLN ① AH×HD = BH×HE ③ BH×HE = BDxDC H D E C AB=CB より,線分BE は∠B の二等分線であるから、出 BH である。 また、点Eは辺ACの中点であるから. HE = ケ コ サ である。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

すごく困っています。誰か教えてほしいです。

「境界付き曲面」 レポートに提 出 下記の展開図を完成させると境 界付き曲面になるが、 その境界は いくつの円周で構成されているか を、完成図での角の集まり方を調 べることによって求めよ。 更に、 向きづけ可能性とオイラー数を計 算せよ。 また、円板を必要枚数縫 い付けて(純正) 曲面にしたと き、それは分類定理のどの(純 正) 曲面になるかを答えよ。 ※ワードで図を描くのはスキルが いるので、手書きの解答を写真撮 影してワードに画像添付するか、 画像ファイルをレポートに提出す るかしてもよい。 (1) a0bc0b*c*a* (角番号入 り) a102b3c405b*6c*7a*8 (2) ab0bc + c*Oa0 (角番号 入り) a1b203b4c5 + c*607a809 三角形2枚だけの展開図 (貼らな い辺なし) を、 全てリストアップ し、そのそれぞれの完成図を描 け。 但し、実質上同じ展開図は重複 して挙げないこと。 つまり、 展開 図を回転したり裏返したり2枚の 役割を交換したりして同じになる ものは同じ展開図であるし、 辺の ペアにつける名前 (アルファベッ ト) を変更したり、 矢印の向きを ペアで同時に反対にしたりしたも のも実質上同じである。

回答募集中 回答数: 0