学年

教科

質問の種類

数学 大学生・専門学校生・社会人

解答見て、どうしてこの答えになるのかは理解できましたが、どうして私の回答が間違いですか?

めよ。 基本 122 れる。 Ax ev 女を をg, とし =1 =71- ) ば 124 1次不定方程式の自然数解 基本例題 xが2桁で最小である組は (x,y)=(1, 等式2x+3y=33 を満たす自然数x,yの組は CHART O SOLUTION 方程式の自然数解 ...... 不等式で範囲を絞り込む 「x,yが自然数」すなわち x≧1,y≧1 (あるいは x>0,y>0) という条件を利 用して、最初からx,yの値の範囲を絞り込むとよい。 別] 基本例題122と同様にして方程式 2x+3y=33 の整数解を求めた後で, x, が自然数になるように絞り込んでもよい。 解答 2x+3y=33 から 2x=33-3y すなわち 2x=3(11-y) 2と3は互いに素であるから, xは3の倍数である。 ① において, y ≧1 であるから 11-y≤10 よって 2x≦3・10=30 更に, x≧1 であるから 1≤x≤15 ②③から x = 3, 6,9,12,15 ゆえに,等式を満たす自然数x,yの組は それらのうちxが2桁で最小である組は 別解x=0,y=11 は, 2x+3y=33 であるから 2.0+3・11=33 ① ② から 2x+3(y-11)=0 すなわち 2x=-3(y-11) 2と3は互いに素であるから, ① のすべての整数解は x=3k, y=-2+11 (kは整数) と伝定して ..... 0000 | 組ある。 それらのうち である。 |基本 122 [福岡工大] 5組 (x,y)=(112,3) ① の整数解の1つ と表される。 x≧1, y ≧1 であるから よって ≤ks5 kは整数であるから k=1,2,3,4,5 ゆえに,①を満たす自然数x,yの組は『5組 xが2桁で最小となるのはk=4のときであり, (x,y)=(112, 3) このときの組は 3k≧1, -2k+11≧1 重要 125 11-yは2の倍数である からyは奇数。 こちら から絞り込んでもよい。 429 ◆それぞれのxに対して, yは自然数になる。 2x=33-3y =3(11-y) と変形してもよい。 2k≧10から k≤5 不等号の向きに注意。 ←xが2桁のとき x=3k≧10 4章 15 ユークリッドの互除法 (E ス 免

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

多様体の接空間に関する基底定理の証明です。g(q)=∫〜と定義した関数を微積分学の基本定理を用いながら変形してg(q)=g(0)+∑gᵢuⁱと導出するのですが、これがうまくいきません。 自分は、g(q)の式をまず両辺tで微分して、次に両辺uⁱで積分して、最後に両辺tで積分... 続きを読む

12. Theorem.If{ = (x', , x") is a coordinate system in M at p, then its coordinate vectors d, lp, …… 0,l, forma basis for the tangent space T,(M); and D= E(x) 。 i=1 for all ve T(M). Proof. By the preceding remarks we can work solely on the coordinate neighborhood of G. Since u(c) = Othere is no loss of generality in assuming ど(p) = 0eR". Shrinking W if necessary gives E(W) = {qe R":|q| < } for some 8. Ifg is a smooth function on E(W) then for each 1 <isndefine og (tq) dt du g(9) = for all qe {(W). It follows using the fundamental theorem of calculus that g= g(0) + E&,u' on (W). Thus if fe &(M), setting g = f。' yields f= f(P) + Ex on U. Applying d/ax' gives f(p) = (f /0x)(P). Thus applying the tangent vector e to the formula gives (f) = 0+ E(x'(p) + E Ap)u(x) = E(Px). ず ax Since this holds for all f e &(M), the tangent vectors v and Z Ux') d,l, are equal. It remains to show that the coordinate vectors are linearly independent. But if ) a, o.l, = 0, then application to x' yields dxi 0=24 (P) = 2q d」= 4. In particular the (vector space) dimension of T,(M) is the same as the dimension of M.

未解決 回答数: 1