学年

教科

質問の種類

数学 大学生・専門学校生・社会人

青チャートの式と曲線についてです。 赤枠で囲った部分は、図を書けば一目瞭然ですが、式から求めるにはどうすれば良いのでしょうか? よろしくお願いします🙇

[重要] 例題 接線の交点の軌跡 楕円x2+4y2=4について,楕円の外部の点P(a,b)から,この楕円に引いた2 本の接線が直交するような点Pの軌跡を求めよ。 [類 お茶の水大] 指針点Pを通る直線y=m(x-a)+6が,楕円x2+4y²=4に接するための条件は, x2+4{m(x-a)+b=4の判別式Dについて, D=0が成り立つことである。 また、D=0の解が接線の傾きを与えるから,直交傾きの積が-1 と 解と係数の関 係を利用する。 なお,接線がx軸に垂直な場合は別に調べる。 [参考] 次ページでは, 楕円の補助円を利用する解法も紹介している。 CHART 直交する接線 D = 0, (傾きの積)=-1の活用 解答 [1] a≠±2のとき, 点Pを通る接線の方程式は y=m(x-a)+b とおける これを楕円の方程式に代入して整理すると (4m²+1)x2+8m(b-ma)x+4(b-ma)2-4=0 (*) このxの2次方程式の判別式をDとすると D=0 ここで 12/2=16m²(b-ma)-(4m²+1){4(b-ma)-4} TRETJI =-4(b-ma)^2+4(4m²+1) =4{(4-α²)m²+2abm-62+1} ゆえに (4-a²)m²+2abm-b²+1=0 .... IE の2次方程式 ①の2つの解を α, β とすると αβ=1 - 62+1 すなわち 4-a² よって a²+b=5, a+±z [2] α=±2のとき, 直交する2本の接線はx=±2,y=±1| 863 NO (複号任意) の組で, その交点の座標は =-1 842 88-11+x20=1+ (2, 1), (2, -1), (-2, 1), (-2, -1) にある 円x2+y2=5 -√5 基本63 √√5 6754 11 -2 0 |-1 -√5 x 2 +4y²=4 判別式 P(a, b) √5 2, x (*) (b-ma) のまま扱うと, 計算がしやすい。 直交傾きの積が1 < 解と係数の関係 2次方程式 px2+gx+r=0 について =-1が成り立つとき, q^-4pr=q²+4p2> 0 となり、 異なる2つの実数 解をもつ。 [1], [2] から 求める軌跡は 68+(-3) [参考] m の2次方程式 ① が異なる2つの実数解をもつことは, 楕円の外部の点から2本の接線が 引けることから明らかであるが (解答の図参照), これは次のようにして示される。 D' mの2次方程式 ① の判別式をDとすると 2/2=(ab)²-(4-q²)(−62+1)=a²+46²-4 点Pは楕円の外部にあるから 4 +46²4(>が成り立つ理由はか.125 参照。) ゆえに D'>0 なお、一般に楕円の直交する接線の交点の軌跡は円になる。この円を準円という。 に接する2本の直線 2章 8 2次曲線の接線

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学検定3級の問題です なんでこの公式?で相関係数が求められるのですか? sxy/sx*syの公式をどう変形したら3枚目の写真の形になるのでしょうか 教えてください!

問13 2つの変数x, y について次のデータが得られた I y 〔1〕xとyの相関係数はいくらか。次の①~⑤のうちから最も適切なものを一つ 選べ 19 1709 ① 0.85 ② 0.34 ③ 0.11 001122 361 Lpatos A [2]xおよびy の出現頻度に関して,次の I ~ⅢI の記述を考えた。 相関係数 I.xの値は0,1,2が同じ頻度で出現した。 Ⅱ.yの値は1,2,34,5,6の2倍の頻度で出現した。 ⅢI.xが1であったとき、yの値は1のみ出現した。 相、平 4 25- IとⅡIとⅢIはすべて正しい x分散・分散 この記述 I~Ⅲに関して、次の①~⑤のうちから最も適切なものを一つ選べ。 2001-10 Ⅰ のみ正しい人 ② ⅡIのみ正しい ③ ⅢIのみ正しい ④ ⅠとⅡIのみ正しい 分音 6 4 -0.24 問14 ある中学校で数学と理科の試験を行ったところ、 数学と理科の得点の相関係数 は 0.24 であった。 各生徒の得点をそれぞれ2倍したとき, 数学と理科の得点の相関 係数は0.24の何倍になるか。 次の①~⑤のうちから適切なものを一つ選べ。 BOLSO 21 ①1/√2 ② 2 ③ 1 -0.79 直一平均12 PRELA 2 46 4 問15 次の散布 ある。 なお 理科の得点(点) 100 90 80g 70 60 50 【名】統計検定3級・4級 【本書の感想】 本書をどこでお知りにな 後を考えている

未解決 回答数: 1