学年

教科

質問の種類

数学 大学生・専門学校生・社会人

A5の問題の答え教えていただきたいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

A1(1)~(7)教えて欲しいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

すみません統計全くわかりません 解答とわかりやすい解説どうかお願いします🤲

統計 まとめ問題 ある地域の無数に居る学生を対象とした100点満点の試験において、 数学と理科の点数はそれぞ れおよそ正規母集団N (μa, z) N (μb, of) を成すという。 数学試験の事情に詳しい人に話を伺っ たところ、 数学の得点の母平均 μa の値については教えてくれなかったが、 母分散は2 で 250.0 あるという。理科の得点が成す正規母集団の母平均 μと母分散 of については全く分からない。 そこでこれらの値を推定するべくこの地域から10人の学生を無作為に選び、 その学生に順に ①,②,... ⑩ と番号を付けて数学と理科の試験を実施することにした。 試験実施前の段階で、 学 生 水の取る数学、理科の得点をそれぞれ Xk, Yk と置いておく (この段階ではまだXk, Yk の値は分か らないので、これらは確率変数と考える)。 このとき (1) 確率変数 X10 - Ha √2/10 10 (2) 確率変数X は f(x) = である。また、 μa に対する 90%信頼区間を、 この分布の両側10% 点 Z0.05 と を用いて 表すと (Yi - Y10)² 分布に従う。この分布の確率密度関数 f(z) は であり、ゆえにの ZER は 品 i=1 頼区間を、この分布の左側5%点w0.95 と右側 5%点 wo.05 を用いて表すと X1 X2 31 2 分布に従う。このときに対する90%信 実際に試験を実施したところ、 学生の数学と理科の得点をそれぞれ Tk, ykと表す (つまりこれ らはXk, Yk の実現値) とき 2次元データ (z)=( X10 Y10 1 となる。 を順に 学生 (2) ③ 4 5 (8) (9) 10 数学の得点 56 60 62 24 70 63 44 77 36 60 理科の得点 76 70 60 45 82 51 39 98 60 63 となる。 = のように得た(例えば 26 (学生⑥の数学の得点)=63であり、 36 (学生 ⑥の理科の得点)=51 という こと)。 (3) 上の1次元データ = (x1, 2, 10) を小さい順に並べると

回答募集中 回答数: 0