学年

教科

質問の種類

数学 大学生・専門学校生・社会人

影で見にくくすいません 解答のところでシャーペンで①と書いているところ見て欲しいです。 なぜ絶対値β➖絶対値bnになるのか分からないので教えて欲しいです。

x 2 数列の収束と発散 23 基本 例題 018 数列の収束とE-N論法の段階的考察 すべての自然数nに対してb,≠0 である数列{bm} が収束して, limbm=B,B≠0 n100 が に収束することを証明せよ。 本基 とする。次のことを利用して、数列{1} (i) 任意の正の実数に対して、 ある自然数 No が存在して, n≧N となるすべ ての自然数nについて,|bn-β<sが成り立つ。 (n> No) (i)ある自然数 N が存在して,n≧N となるすべての自然数nについて, |bm-B< 21/2Bが成り立つ。 (税込)(8) 指針 E-N論法で,以下により 1 B-bn |bm-B| イーモニ bn B bnB |bnB\ が十分小さくなることを示す。 (i) を用いて,分子のbm-βがいくらでも小さくなること (1) (i) を用いて、 1 bal が上に有界であること (1) 解答 n→∞のときBであるから,十分大きい自然数 N に対して,n≧N となる すべての自然数nについて、1bB 12/13が成り立つ。 このとき,n≧N ならば 131-161=10-B11/131 よって1/181<100116-1-1月では?? これとβ≠0 より ならば 1 2 < となる。 |bn| B 更に、任意の正の実数をとる。 このとき,十分大きい自然数 No に対して,n≧N となるす α6を実数とすると, 三角不等式 a+ba+b が成り立つ。 変形して |a+6|-|a|≧|6| a+b=c とすると |c|-|a|≦|c-al となる。 べての自然数nについて|bm-31<181 が成り立つ。 11. B-bnbn-BI bn Ibn B 2 ここで,N=max {No, Ni} とおくと, n≧N ならば, n≧No かつ≧N であるから以下が成り立つ。 1/1-18-01-106-81-216-812 18 ■ max {No, Ni} は,No 1312 と N1 のどちらか小さ くない方を選ぶ。 B12 B1 2 E=E ゆえに、数列{1} は 1/1 に収束する。 B 検討 この問題では「すべての自然数nに対して 6,≠0」 が仮定されていたが、その仮定を外しても 1 bn B は証明できる。 その場合、数列{6} は B0 に収束するが、途中で0になる可能性 はある。したがって,十分大きい番号nを考えて, b がBに十分近づくようにし,bm0 を保 証してから収束を議論する必要がある。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

高校数学のことで質問です🙋 赤線で囲んだ中で垂直な直線を求めていると思いますが、その過程でどのような考え方を用いて導かれたのかが分かりません。 よろしくお願いします🙇

標を媒介変数 また,点Pは第1象限の点であるから,媒介変数の値の範囲に注意して 積Sのとりうる値の範囲を考える。 の式に代入す 解答 条件から,P(acoso, bsine) (0<< )と表される。 π 点Pにおける接線の方程式は acos o bsin x+ a² -y=1 62 すなわち (bcosθ)x+(asin0)y=ab ①1) と表される。(*) これが点Pを通るとき ①に垂直な直線は, (asin0)x- (bcos0)y=c (cは定数) casino・acoso-bcose・bsino =(a2-b2)sinOcos O よって, 点P における法線の方程式は 5/ bsine 0 R (*) 2直線が FAOqx-py+r= 直である。 なお,点(x 直線 px+g_ 直線の方 9-I + (asino)x-(bcose)y=(a-b2)sin Acose ②において,y=0, x=0 とそれぞれおくことにより (Sa²-b² 2-62 x= より ゆえに ゆえに a2-62 -cos 0, y=- -sinė a b Q(a-be cose, 0), R(0, db sino) Q(22-62 a ここで, 0<b<a, sin>0, cos0 >0より, b -sin0 < 0 であるから ...... ② [9(x-x1) このことを いてもよい。 ◄62<a² a²-b² a²-6² cos 0>0, - a b S= =1/2OQOR= (A2-62)2 1 a²-b2 a²- cos 0.. sino 2 a b OR-b (a2-62)2 Gaian-00-A8-A0=80= = -sino coso= -sin20 sin Acoso 2ab 4ab 0<<1より、0<20<πであるから π 0<sin 20≦1 20=す ときSは最 2 (a²-b²)² したがって 0<S≤ 4ab 練習 実数x, y が 2x2+3y=1 を満たすとき, x2 -y'+xyの最大値と最-

解決済み 回答数: 1