学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の知識ある方、以下にある式の導出方法分かりやすく教えていただきたいです。 分かるところだけでも教えてくれると嬉しいです😭 ちなみにこのサイトは、 統計学入門 http://www.snap-tck.com/room04/c01/stat/stat0001.html こ... 続きを読む

19:56 1 allệ (注3) 相関分析と同様に回帰分析の場合も信頼区間を求めることができま す。まずyの推測値の信頼区間は次のようになります。 この信頼区間は母集 団のy推測値の100(1-α) % が含まれる範囲を表し、信頼限界と呼ぶことが多 いようです。 y=a+b=(my-bmx)+bx = my+b(z-mz)→(j-my)=b(x-mz) VR VR V(j-my) = V(j)+V(my)-2C(j,my) = V(g) + -2 = V(y) - VR =V n n n =V(b(z-mx))=(x-m²) 2V(b)=(x-m²) 2VR S エエ (x - ₂)² 2V (6) - Vx{1+ (².²} =VR n S x=X0の時のy推測値の100(1-α)% 信頼限界: U Dol=a+bro ±t(n-2,a) VR -2,0)√| V₁ { 1/2 + ( 2 = m₂) ² } n S エ mx:xの標本平均 Sxx:xの平方和 VR : 残差分散 VR C(jj,my) = y推定値とmyの共分散 t(n-2, α): 自由度(n-2)のt n 分布における100α%点 この100(1-α)% 信頼限界において、x=mxの時の値を計算すると次のように なります。 VR ŷOL =a+bm±t(n-2,0) VR・ -2,0) √/ VR { 1 1 1 + (m₂ - m₂)² S エエ 2²}. =my±t(n-2,a)V n n これは値と残差分散が少し異なるだけで、 平均値の信頼限界(信頼区間) とほ ぼ同じ式であることがわかると思います。 つまり回帰直線は平均値を2次元 に拡張したものに相当し、 y推測値の信頼限界は平均値の信頼限界を2次元に 拡張したものに相当することになります。 次にyの信頼限界を求めてみましょう。 もしaとbに誤差がない、つまりy推 測値に誤差がないとすると次のようになります。 これが許容限界になりま す。 V(g) = V(g+c)=V(e) =VR x=x0の時のyの100(1-α) % 許容限界: gol =a+bro ±t(n-2,a)VVR you x=mxの時: gol = my±t(n-2,a) VVR しかし実際にはaとbには誤差があるので次のようになります。 これが棄却 限界です。 回帰分析の場合は棄却限界のことを予測限界 (prediction limit)と 呼びます。 (x-²)) S エ n n SII V(g+c)=V(g)+V(c) +2C(j,c)=VR /R { 1 + (*² =− m ₂) ² } + V₁ + 0 = VR { 1 + 1 2 + ( x − m ₂ )² ]} x=X0の時のyの100(1-α) % 予測限界: 1 (x-m₂)² yoz=a+bro ±t(n-2.0)/VR =t(n-2,α) √ -2,0) √/V₁ { 1 + 1 + n S エ U x=mxの時: yol = my ±t(n-2,a) 2, a) √/ VR (1+1) VR (1+ 安全ではありません - snap-tck.com

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

 リヤプノフ関数を用いた微分方程式系の安定性解析について勉強をしています。 写真の問題のうち、問23.1の(1)及び問23.2の(3)の解き方が分からないので教えて頂けますと幸いです。原点が中心、半径がルート3の円が不変集合になる理由も併せてお願い頂けるとありがたいです。よ... 続きを読む

23. リヤプノフ関数と安定性* 108 間 23.2 微分方程式系 dy =ーC dt (12) da =リー(=/3-2), (μ は負定数) dt について,次の間いに答えよ。 (1) V(r,g) = (z° +y°)/2 とする. このとき V12) (z,4) を求めよ。 (Ans. -μ(z°/3 -1)a?) (2) (12) の平衡点 (0,0) は安定であることを示せ。 (3) [研究] 点 (o,Yo) が (2o)? + (yo)? <3 を満たすとする. このとき, (zo,10) を通る解はt→8とすると (0,0) に収束することを示せ。 (ヒント. E={(0,9) : -0 <y < 8} であることに注意し, LaSalle の不変原理 と呼ばれる結果(下記参照) を適用する.) 【参考) RT 内の集合 Mは, 任意の co E Mに対し, zoを通る (2) の解が常に M に留まるな らば (2) に対する不変集合と呼ばれる。 LaSalle の不変原理 V(z) (zE S) は (2) のリヤプノフ関数とする. このとき, S 内に留まる(2) の有界解は, t→ o とするとき E:={ueS:Vg)(z) =D 0} に含まれ る(2) の最大不変集合に近づく

未解決 回答数: 1
数学 大学生・専門学校生・社会人

問題としてはこのURLのやつでexercise2.2.9の問題です。 2.2.9. Define T : ℓ^2(Zn ) → ℓ^2(Zn ) by (T(z))(n) =z(n + 1) − z(n). Find all eigenvalues of T.... 続きを読む

16:22マ l 全 の Exerc: 164/520 matrices, convolution operators, and Fourier r operators. 2.2.9. Define T:l'(Zn) - → e°(ZN) by ニ Find all eigenvalues of T. 2.2.10. Let T(m):e'(Z4) → '(Z) be the Fourier multipliei (mz)' where m = (1,0, i, -2) defined by T (m)(2) = i. Find be l(Z4) such that T(m) is the convolutior Tb (defined by Th(Z) = b*z). ii. Find the matrix that represents T(m) with resp standard basis. 2.2.11. i. Suppose Ti, T2:l(ZN) → e(ZN) are tra invariant linear transformations. Prove that th sition T, o T, is translation invariant. ii. Suppose A and B are circulant NxN matric directly (i.e., just using the definition of a matrix, not using Theorem 2.19) that AB is Show that this result and Theorem 2.19 imp Hint: Write out the (m + 1,n+1) entry of the definition of matrix multiplication; compare hint to Exercise 2.2.12 (i). iii. Suppose b,, bz e l'(Zn). Prove that the cor Tb, o Tb, of the convolution operators Tb, and convolution operator T, with b = 2 bz * b.. E Exercise 2.2.6. iv. Suppose m,, mz € l"(Z). Prove that the cor T(m2) ° T(m) and T(m) is the Fourier multiplier operator T) m(n) = m2(n)m」(n) for all n. v. Suppose Ti, T2:l"(Zw) → e'(Zn) are linear tra tions. Prove that if Ti is represented bya matri respect to the Fourier basis F (i.e., [T; (z)]F =A Tz is represented by a matrix Az with respect t the composition T20T, is represented by the ma with respect to F. Deduce part i again. Remark:ByTheerem 2.19, we have just proved of the Fourier multiplier operat Aresearchgate.net - 非公開

未解決 回答数: 1
数学 大学生・専門学校生・社会人

多様体の接空間に関する基底定理の証明です。g(q)=∫〜と定義した関数を微積分学の基本定理を用いながら変形してg(q)=g(0)+∑gᵢuⁱと導出するのですが、これがうまくいきません。 自分は、g(q)の式をまず両辺tで微分して、次に両辺uⁱで積分して、最後に両辺tで積分... 続きを読む

12. Theorem.If{ = (x', , x") is a coordinate system in M at p, then its coordinate vectors d, lp, …… 0,l, forma basis for the tangent space T,(M); and D= E(x) 。 i=1 for all ve T(M). Proof. By the preceding remarks we can work solely on the coordinate neighborhood of G. Since u(c) = Othere is no loss of generality in assuming ど(p) = 0eR". Shrinking W if necessary gives E(W) = {qe R":|q| < } for some 8. Ifg is a smooth function on E(W) then for each 1 <isndefine og (tq) dt du g(9) = for all qe {(W). It follows using the fundamental theorem of calculus that g= g(0) + E&,u' on (W). Thus if fe &(M), setting g = f。' yields f= f(P) + Ex on U. Applying d/ax' gives f(p) = (f /0x)(P). Thus applying the tangent vector e to the formula gives (f) = 0+ E(x'(p) + E Ap)u(x) = E(Px). ず ax Since this holds for all f e &(M), the tangent vectors v and Z Ux') d,l, are equal. It remains to show that the coordinate vectors are linearly independent. But if ) a, o.l, = 0, then application to x' yields dxi 0=24 (P) = 2q d」= 4. In particular the (vector space) dimension of T,(M) is the same as the dimension of M.

未解決 回答数: 1
数学 大学生・専門学校生・社会人

経済学の質問ですが、内容が数学のものでしたのでこの場を借りて質問させて頂きました。文章にある割引利得の数式の意味がわからなく、そのためにある補足説明も読みましたが、数学が苦手な私は数列と無限級数などざっくり説明されても分かりませんでした。もし誰か出来たら、写真上の文章をも... 続きを読む

られたらこちら 済学でよく用いられる方法は, 引利得の総和 (以下単に, 割利得 ガンマ, 小文字) に対して6万円の金が1年後には利子がついて! 1つを採用し, 繰り返し囚人のジレンマ、 略が対戦するとき、 毎回のゲームで行動の組 (C, C) が選択される。 将来利得が割り引かれる原因は, いろいろなものが考えられる。 たとえば, 金銭的な利得の場合, 預金の利子率y(ギリシャ文字の らこちらも協力に戻る戦略である。 列といい う。とく ように, 将来利得の割引 数列とし で公差 また が対戦するとき、 毎回のゲームで行動の組 (C,C) が選択さい このとき、 2人のブプレイヤーは利得5の無限列。 できる 5,5, に 数 を得る。このような利得の無限列の評価として, ゲーム理論ちの 済学でよく用いられる方法は, 割引村得の総和 (以下単に, 割引IBe 和という)である。割引利得の考え方は, 将来の利得を現在時点。 評価する場合,額面より割り引いて評価するというものである。た とえば、1年後にもらえる1万円を, 現在価値に換算して0.7万円 の和 と書 an が無 と評価することである。 この割引の係数0.7 のことを将来利得の割 引因子という。割引因子の値が大きいほど, 将来利得を現在利得 と同程度に高く評価する。 利得5の無限列 (5,5,)の割引利得科 は, 6 (ギリシャ文字のデルタ, 小文字) を将来利得の割引因子とする とき,等比級数の和の公式 ( ds ④) より, と 5+56+ 58 + 5 と計算される。 ここで, 6 (0<6<1) である。 1-6 ガンマ, 小文字) に対して8万円の預金が1年後には利子が 142 第7章 繰り返しゲー( 済がま

未解決 回答数: 1