学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数3の微積分の問題です。 正解の記号を教えて頂きたいです( т т )

H-A 1. (合成関数の微分) 1. 関数 f(x,y)=x,x>0についてA 1. yx, 2. yx, 3. (logy)x³, 4. (log.x)x³, 5. x³, 6. (logy)aly, を求めよ。 とB=C 2. 関数 f(x,y)=x,x>0x=ty=1の合成関数のを求めよ。 1.12.flogt,3.1(1+logr), 4.r-log1,5.8-1 (1+logr), 6. 存在しない 3.g(r)=f(0<r<w) の極値を取る点を求めよ。 (1.1,2.c, 3.1/e, 4.2.5.極値なし) 4. 話は変わりますが lim の値は? 1.e, 2.1.3.1/e, 4.0, 5.存在しない 1+++0 2.合成関数の2階偏導関数) 関数 z=f(r) のr=√²+² との合成関数z= f(vx²+y²) の導関数について答えよ。 1. £.$****. (1. f(r), 2. f'x/r, 3. fy/r, 4. f/r, 5. f'x/2,6. f'y/2) 2. (3)² + (3)² =? (¹. (F², 2. (f)³²/r, 3. (f)²/7², 4. (f)²r, 5. #v³) 3. +=? (1.f″+ƒ', 2. f" + f/r, 3. f" + (x+y)/r. 4. f" + f²/7²,5. #v>) H-A3. (陰関数の微分1) 次の関係式で定まる陰関数の導関数を求めよ. 1. f(x,y)=a²x²+b²y²=0, (A₁-B: - CD - ycossin(オーナ) 2. ysinx=cos(x-y) (1.-200 sint-sin(x-g) . H-A4. (大・小2) 次の関数の極大 極小をしらべよ。 f(x,y)=2019-2²-xy-y²+2x-3y 1.x=y=0 となる点は、(1.(1,2),2.(1,-1), 3. (1,-2), 4. (1,1), 5. 絶対にない) 2. fufy-Con=Bである。 (1正の数, 2.負の数 3.0) 3.点AではCをとる. (1.極小値,2極大値 3. 不明な極値) 4. 極値の値は? (1.2021,2.2022, 3.20234.2024) 2.-s-sin(x-7) 3. ycosx-sin(x) 4.ない) sinx+sin(x-y) sin.x-sin (x-y)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題解ける方いませんか…?

次の1から4までの問題をすべて解答せよ. 1 以下の問いに答えよ. n² - 2n-3 (1) an= -3n²+1 1-n (1) A1= 1 とする. lim an = -- を 論法によって証明せよ. 3 84x (2) an = 2+√n (3) 次の各性質をみたす数列の例をあげよ. とする. lim an =-∞ を 論法によって証明せよ. E n→∞ (a) {an}, {bn} はともに発散するが, {an+bn}は収束する (b){an},{bn}はともに収束するが, は発散する an bn (c) {an} は発散するが, {an} は収束する 2 次の集合の上限・下限・最大値・最小値を求めよ.ただし, 答えのみでよい. -{"=¹ | n=N} (2) A2= {mitm_mnes} mnEN n (4) A4 = {x ∈ Q|x²-2-1 < 0} m (3) A3= + (−1)n+1¹ m, ne neN} n 3 ③a> を定数とする. 数列 {an} を a1 = α, an+1 = V2an + 3 (n ∈N)によって定義す 3 2 る. このとき, {an} が収束することを示し, lim an を求めよ. ただし, {an} の収束性を示す際, n→∞ 「講義スライドの定理 2.7 (有界単調数列の収束)」 または 「教科書第1章定理3 (p.6)」 を用い ること.また, lim an を求める際, 関数 v2 +3 の連続性を用いてよいものとする. n→∞ ※ 「- <a <3」, 「a = 3」, 「a> 3」 と場合分けして議論してみよ) an+1 4④4{an}はan>0 (VEN) および lim =rをみたすものとする. 以下の問いに答えよ. n→∞ an (1) r <1のとき lim an = 0 が成り立つことを示せ . n→∞ (※r+e < 1 をみたす > 0 を1つとって議論してみよ) (2)r>1 のとき lim an = +∞ が成り立つことを示せ . n→∞ (※r-e> 1 をみたす > 0を1つとって議論してみよ)

回答募集中 回答数: 0