学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数学青チャ1A例題59から 赤枠部分について、なぜ正の公約数を持つと有理数でないといえるのでしょうか? また、それをなぜ分数の形にするのでしょうか?

あり ない ない 基本 例題 59 √7 が無理数であることの証明 00000 √7 は無理数であることを証明せよ。ただしnを自然数とするとき, nが7の 倍数ならば, nは7の倍数であることを用いてよいものとする。 [ 類 九州大 ] 指針 無理数であることを直接証明することは難しい。 そこで, 前ページの例題と同様 直接がだめなら間接で 背理法 基本 58 4 解答 に従い 「無理数である」 = 「有理数でない」を,背理法で証明する。 つまり、√7 が有理数(すなわち 既約分数で表される)と仮定して矛盾を導く。・・・・・・・・・ [補足] 2つの自然数α, bが1以外に公約数をもたないとき, αとは互いに素である (数学 A 参照)といい, このときは既約分数である。 して る。 √7 が無理数でないと仮定すると, 1以外に正の公約数をもた ない自然数 α, b を用いて7 と表される。 a √7 は実数であり、無理 b このとき 両辺を2乗すると a=√76を用いて a2=762 ① でないと仮定しているか 有理数である。 この両辺を2乗すると よって, αは7の倍数であるから, a も 7の倍数である。 例題の「ただし書き」を いている。 ゆえに, cを自然数として, α = 7c と表される。 a2=49c2 ① ② から 762=49c2 すなわち 627c2d ② よって, 62 は7の倍数であるから, 6も7の倍数である。 ゆえに α ともは公約数7をもつ。 これも「ただし書き る。 これはaとbが1以外に公約数をもたないことに矛盾する。 したがって√7 は無理数である。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

青のところまでは分かるのですが、その後のAの指数m-1とa1 (この1ってところが分からない)の関係性を教えて欲しいです。スタートがAmではなくてAm-1だったらm-1の時にa0が対応するのは分かるのですが、その理由がわかりません。

① このファイルにはアクセス許可が制限されています。 部の機能にアクセスできない可能性があります。 - アクセス許可の表示 × m を0以上の整数とする。 10m 秒の時点で A,Bを訪れているユーザー数を am人, bm人 とする。そうすると調査結果から, 時刻に伴って変化する数列{am}と{bm}ができて,a=100, bo = 200および, Jam+1=0.9am+0.26m lbm+1=0.1am+0.8bm を満たす。これは一種の漸化式であるが, 2つの数列をまたがって表現されたもので 連立 漸化式といわれる。 その形は連立1次方程式と似ている。 そのため行列を用いて, (am+1) = (0.9 0:2) (bm) 0.2/am 0.8 0.9 0.2\ と表せる。ここで, A= 0.1 とおくと, 10m 秒後の人数の分布は, 0.8. ram² am-2 = A =A A =A2 (am-2) m m-1 かる! ao Am (61) = Am (60) = 4 (200) " で計算することができる。 最後の式には, Am乗が登場している。そこで続いて, 行列のべき 乗を考えてみよう。 bm-21 \bm-2 = Am-1 == 注意.上の行列4は行ベクトルの和が, (0.9 8,2) (0.1 0.8) 15 13 と、すべての成分が1の行ベクトルになる。このような、行ベクトルの和が1だけの行ベク トルとなる行列を確率行列という。確率行列は、分布状態の変化を表すときなどに現れる重 要な行列である。 2.2.2 行列のべき乗 すでに私たちは、 対角行列のべき乗が簡単に求められることを25ページで学んでいるの で,この考え方をもとに行列のべき乗を求めることを考える。 O Mi +

解決済み 回答数: 1