学年

教科

質問の種類

数学 大学生・専門学校生・社会人

写真はロピタルの定理をε-δ論法を用いて証明したものについてですがらわからないことが3つあります。 ①なぜδをさらに小さくすると、青線のような不等式が成り立つのですか? ②どの部分の不等式を変形したら赤線の不等式が出てくるのですか? ③赤線の不等式が成り立つときなぜ定理が証... 続きを読む

定理4.6 f(x),g(x) が (a,b) 上の微分可能な関数で lim f(x) = lim_g(x) =+∞ エロ+ f'(エ) をみたしているとする。 このとき 極限 lim = = A が存在するならば x+a+ g'(x) f(x) lim == A za+ g(x) が成り立つ。なおこの定理は lim の部分をすべて lim あるいは lim, +α14 lim におきかえても成立する. b- 8 ◆証明 任意の0<<1に対して,あるδ0が存在し,a<x<a+δに対して f'(x) A-< <A+EAKE g'(x) が成り立つ。必要なら80をさらに小さくとって,f(x)>0,g(z) >O(a<x< a+δ) となるようにできる。 コーシーの平均値定理から, a<x<a +δに対して,あ ∈ (+8)が存在し, f(x)-f(a+8) f'(g) = g(x) − g(a+8) g'(§) が成り立つ。ゆえに A-ε< f(x)-f(a+8) である. したがって f(x) = + g(x) g(x) である. ここで 9(x) − g(a+6) = 1 g(x) g(a+6) (エ) f(a+8) →1 (x → a+), g(x) − g(a + 8) f(x)-f(a+δ)g(x)-g(a+8) f(a+8) 9(x) g(x) − g(a+8) <A+e 価 以 grat (エ) 0(土)であるから,必要ならばさらにを小さくとることにより1> g(z)-g(a+6) f(a +8) g(x) >1-ɛ, 0< <e としてよい。ゆえに g(x) f(x) (A+c) +g> >(A-) (1-e)=A-e(A+1-c) g(x) が成り立つ。よって定理が証明された, 残りの主張も同様の議論で証明できる.

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

文章題、操作の手順の問題です。解説の意味が最初から全くわからないのですが、どなたかわかりますでしょうか…?解説して頂けるとありがたいです…

市役所上・中級 A日程 No. 242 判断推理唄 操作手順 25年度 A~Dの4人があみだくじを行った。 4人のスタート位置は図のよう であり,Aは1段目, Bは2段目, Cは3段目, Dは4段目にそれぞ れ横に1か所だけ線を書き加えた。その結果,当たりとなったのはDO であった。アイのことがわかっているとき,正しいものは次のうち どれか。 アDは,横の線を書き加えなくても当たりだった。 イCは,Aが横に線を書き加えた位置の真下に横の線を書き加え れば当たっていた。 AはCよりも左側の位置に到達した。 A 1段目 A 2段目B 13段目 C 14段目 市役 3X にな 3にボ の 数学 物理 5/18 1 2Bが横に移動したのは2回だった。 3CはBよりも右側の位置に到達した。 4DはBよりも右側に横の線を書き加えた。 5Aが横に移動したのは3回だった。 当たり 解説 Dは横の線を書き加えなくても当たりだったのだから, Dは4段目の最も左側に横の線を書き 加えたことになる。そして, Dが当たるためには,Dは (1) 横に1回も移動しない (2) 左 右に1回ずつ移動する, (3) 左右に2回ずつ移動する、のいずれかでなければならないが,D が書き加えた線が最も左側であることから, 左右に2回ずつ移動して当たりとなることはな い。そうすると,Dが書き加えた線が最も左側で,Dが当たりとなるのは10通りあることにな る。 このうち、条件を満たすのは下図の場合だけであり,この1通りに確定する。このとき, 4人の到達位置は左からC, B, D, A (スタート時の位置関係と同じ)となる。 CBDA 生物 地学 文章理解 判断推理 よって、正答は2である。 O C (M) 1-Exa Jos 正答 2

回答募集中 回答数: 0