数学 大学生・専門学校生・社会人 27日前 (2)がわかりません。 【教 p.20~23】 91 421. 大中小3個のさいころを同時に投げるとき, 次の場合の数を求めよ。 □(1) 目の和が8になる。 □(2) 少なくとも1個の目は偶数となる。 1 (3) 偶数2個, 奇数1個になる。 □(4) 目の和が奇数になる。 □ (5) 目の積が偶数になる。 A 道は何するか 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 27日前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 29日前 4(4)(5) と 5 のリミットの計算ができません (4)はこれ以降どのようにすればいいかわからず、(5)と5の計算については全く分かりません どなたか教えてください 数学総合演習 (05/14, 解析) 解答は解答用紙1枚に全て記入すること. 裏面を使っても良い。 ・解答は 解の導出過程 (途中計算) も含めて, ていねいに記述すること. ・日付, 科目, 担当教官,氏名, 学籍番号, クラスを忘れずに記入すること. ※ 科目 数学総合演習1, 担当教官 美暁 解答用紙の提出について (ジャン シャオホン) 1. 演習レポート形式: 複数ページの解答用紙の写真を1つのPDFファイルにまとめて解答用紙に氏名、学籍番号、クラ スを忘れずに記入すること)。 ファイル上 (5MB)。 2 演習レポートのファイル名: "学籍番号演習期 pdf" としていただきますようお願いいたします。 (例: 学生 b1008300 について。 4月21日の演習の場合、レポートは "b1008300-0421.pdf になります。) 3.課題レポートの提出先: 以下の場所に提出してください。 [HOPE]-[数学総合演習11-EFGH]-数学総合演習1-解析 (1-EFGHクラス) (05/14) 提出締め切り:5月15日 (木) 午後6:30 まで。 解答の公開 5月15日 (木) からHOPEで公開されます。 1. (x+2)* を計算しなさい。 2. 次の一般項で与えられる数列のうち、 収束するものを選びなさい. an =2n+1,b=,c="ds=cosl n 3. 数列a.= (-)" が収束する範囲を求めよ。 また、収束するときの 72 極限値 lim (14) を求めよ. +80] 4. つぎの極限を調べよ。 4+8+... +4 n→∞ 1+3+…+ (2n-1) (1) lim n! (3) lim (5) lim V3n+1 72100 (2) lim n→∞0 (4) lim (1+1/+1/+ + n→∞ (6) lim noon- n 5.p>0.0>>とする。 4.+1=20 (1+pan)をみたす数列を考える。 1 + 2pan+s = (1+2pa) を示し, lim == 上を導け、 11-00 2p 未解決 回答数: 1
数学 大学生・専門学校生・社会人 30日前 εが任意だから赤線のように置かれているのがわかりません🙇♀️ n! (2) 1.3.5... (2n-1) ーの例題については, 演習問題2で解説する 1 それでは,ダランベールの判定法で, (i) 0≦r<1の場合に、なぜ 項級数が収束するのか,その証明を入れておくよ。 (i) 0≦r<1の場合 an+1=rのとき,これを-N論法で書き換えると、 n→∞ an >0,N>0s.t.n≧N ⇒ an+1- | a n + 1 = r | << & an となる。 1-L ( > 0) とおいてもいい。 す 20 ここで, e は任意より,c= 2 これが, 証明のコツ n=N,N+1,N+2,... のとき, この部分のみを変 an+1 -r< an 2 水上より1 < an+1. 1-r -r< an 2 an+1<rt an 1 1+r 2 2 = 2 ≦R 0≦r <1より, 1≦1tr<2 1 1+r -≤ 2 2 未解決 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 行列の問題です。 わからないので、教えていただきたいです。 次の行列を計算しなさい. 11 1 1 3 1 11 0 1 1 0 1 1 1 0 0 1 1 0 2011 20001 2001 1 000 1 00 01 0 000 0 0 0 0 解決済み 回答数: 2
数学 大学生・専門学校生・社会人 約1ヶ月前 集中荷重についてです。 画像1枚目の場合に2枚目のような場合分けが必要なことは分かるのですが、3枚目の時に場合分けがいらなぃ理由が分かりません。 また3枚目(1)の時に、wには0を入れて計算しているのに力がかかっている点であるlの時を代入していい理由も分かりません。(伝わり... 続きを読む y 22 P 2/2 2ɛ 2 1ε 1 1+€ 2 2 2 P x 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 約2ヶ月前 例題(2)を参考に問9の解答を教えてください。 加法定理を使うみたいです。 例題 4. (1) sin-1x=cos cos-1 (4/5) をみたす を求めよ. 1 (2) sin x+cos-1x=1/2 を示せ. 【解答】 (1) sin-1x=cos-1(4/5)=yとおくと,-/2y/2 かつ 0≦y ≦ だから 0≦y ≦ ™/2.cosy = 4/5 より x = siny = V1- cos2 y = 3/5. (2)sin1=yとおくと siny = /2/22) だから cOS (T/2-y)= siny = x. このとき 0 ≦™/2-y ≦ であるから cos-1x=/2-y=™/2-sin-1 となり,結論を得る. X 問7 次の値を求めよ. (1) sin-1 -1 /3 1 (2) cos -1 (3) tan V2 2 √3 (4) sin'(−1) (5) tan 1 -1 (6) lim tan X -1 問8 次の式をみたす を求めよ. IC (1) cos ・1 -1 x = tan √5 (2) sin 問9 tan 1 -1 +tan を示せ. 2 3 4 3-5 -1 = tan X 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 約2ヶ月前 大門2の簡約化解いて欲しいです。 最初、簡約化した時は、7とか9とか値がでかいから小さくしてから簡約化を始めようとか考えていたのですが、なんぼしてもダメだったので、次にゴリ押しで計算していくような方法でしました。でも、結果は2枚目の通り分母分子がすっごいでかい値になってし... 続きを読む 数学 初歩からジョルダ 3x-6y+5z+W=-7 7x+27+5w = =-9 -2x+10g+5z+14w=6 4x+y+27+2w=3 5+2g-Z+w=0 E = ) [レ 5 14 6 3-6 37 2 4 54 5 0 10 5 2 1 2 で 2 E→ Ex(t) E21(-7) E31(2) E41 (-4) E51(-5) 2 P より、 3-65 7245 2 S 10 1 2 SN'T NA 2 2 -9 630 となるので、 をおいて、拡大存的別を問約化する。 → 1 59-179 。 E34 0 125/18 5/18 自分 。 E23( 00 262/9 - 380 32/9 0 E2(6) b 102/6 - 16% 62/6 14 Esa (-14) 0 0 0 -2 - 7/3 140/22/3 。 6 0 0 5/1/3 4/3 9-1/3 2/3 3/3 122/322/325/3 - 4/17 25/234327/468 12/13 -4089 9/26 2539 ( E12(2) E42(-9) ₤32(-12) 0 0 0 0 0 0 →>>>> ¥35 F3 (56) 長は小麦) E231-1/2) ₤43(-) Ess(-) 0 - 0 0 78 0710035 156 1673 117 09 0 00 176362 13 0 0 0 L 0 0 0 00 0 O D 2539 1 8178 b -00 0 20/18328/9 2/9 2619-3893819 103/31 -26-38-9 - 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約2ヶ月前 最後できたと思ったのですが、 M=1の時の値が問題文のBと等しくなかったことにきずいて、よく考えたら二項定理が間違っていると思いました。 そして二項定理を解こうとしたのですが、どうすれば良いのか分からなかったので教えて欲しいです。 (2)方針としては(1)を使って規則性... 続きを読む [1] (1) m 010 A O = J D D O 0 O 1 9 0 m=292 A 00 m=32. A³ =AA= 8 001 010 0.0 DO = ( 0 0 0 ° P 00 0 010 000 9 11 800 10 D D O 0 060 000 m239 z Am = (2)A+4E= D 060 AE = EA +2. Bm = (A+4E)" m T 0 0 C A = A + 4m AE + 4 Em = = m 4 Am f +4₤m ex AmA +4E 04mo + 0 04h 0 0 0 40 = 4 0 4 0 0 = I (A+46) B AM + ml 4EAM- である。 mCAA mm Cm 4m 4E m = 1 B 962 m=2982 0 0 0 a B² 00 1 1=39785 006 000 0 00 f P D P O 0 4 + D 8. 0 + 00 8 0 004 + 40 040 4 。 = とかるので 45 0 D 45 6 0 4 0 D O 4 = 0 4 48 0 0 48 0 4 B³ = 000 f 120 。 + 4 D D = 4120 O O 12 D 4 9 D 4 12 0 O P 9 0 G 123962 [44m °) 0 0 44m 004 回答募集中 回答数: 0