学年

教科

質問の種類

数学 大学生・専門学校生・社会人

解ける人解いて教えてもらえたりしませんか?😭 解き方を知りたいです。

[5] 行列 A = の固有値と固有ベクトルを求める。 すなわち, Aæ= 入z を満たす実数 入と, 入に対応するべ クトルæ≠0を求める. Ax = 入 は 50 = [57] と変形される. 仮定よりæ≠0 であるので, [56] の逆行列は [58] が導かれるからである。従って, [56] の [60] は [61] であるこ 0 [[90]] 8 [63] [64] = 0 が得られる. これを解いて,固有値入= [65] 10 2 なら, とがわかる. [56] の逆行列が [59] ならばæ www これより、 固有方程式 入 + [62]入一 を得る. 3 4 [56] [57] 選択肢 0 (A-X) 1 (A - λx) ⑤0 (※スカラーの零) ⑥6 0 (※ ベクトル) 存在する [58] |~ [61] 選択肢 (同じ番号を繰り返し用いて良い) ⑩ 行列式 ① 対称行列 ② 逆行列 ⑥⑥ 存在しない 77零 以下, 求める固有ベクトルをæ= ⑩ ●入= [65] のとき, Aæ= 入æは唯一つの方程式æ1+ |[67] [68] (2) ● 入 = - [66] のとき,同様にして, 固有ベクトルæ= ち [69] 選択肢 次のページへ続く. (A – AI) ⑦○ 21 とおく. X2 ① 100000 に対する固有ベクトルはæ= 169 (これを」 とおく) である. [68] [67] [67] [68] ② (3) X [67] ③ 直交行列 ⑧ 零ベクトル 1 [70] [71]| -3 A [68] 3 32=0 と同値となる。 従って, 固有値入 = [65] 2 4 x (9) I ④ 転置行列 ⑨ 零行列 ③ (これを2 とおく) を得る. [66] 5 [68] |[67]

未解決 回答数: 0
数学 大学生・専門学校生・社会人

大学の「微分積分」で出題された周波数の課題です。 (1)だけでもいいのでわかる方いらっしゃったら教えてください。

2 以下の説明を読み、 設問 (1) (6) 答えよ. 授業中に周波数を少しずらした二つの音を発生させて、唸りが聞こえるこ とを実演した.この現象を数学的に記述してみよう。 音とは、空気の振動が空気中を伝播して耳に届くことで認識される自然現 象である. tを時刻 (単位:秒) として、振動がy=sin (ct) (cは定数) の 形で表される波を正弦波と呼ぶ。 正弦波の周波数 (単位:Hz=1/秒) とは 「波が1秒間に何回振動する か」 を表す量である. 例えば sin (2t) は 「周波数1の正弦波」 であるが、 この音波は人間の耳には聞こえない。 人間の可聴域はだいたいf=20Hz 15,000Hz であると言われている。 (1) 周波数 f(Hz) の正弦波を時刻t (秒) の関数で表せ。 (ヒント: f は正の整数であると考え、 t=1のときに sin の中身が 「f回回転 「した角度」を表すように定数を定めれば良い) さて, 音波は重ね合わせの原理が成り立つ。 つまり、二つの地点から発せ られる音波がある地点Pでそれぞれ a(t), b(t) で表されるとき, それら を同時に発生させると P では a(t)+b(t) という音波となる. いま周波数 f=400Hzを中心として、そこから前後に1Hz ずらした二つ の周波数 f=399 Hz, fz = 401Hz を考えよう。 (2) 周波数ffzの正弦波を同時に発生させたときに観測される音波 a(t) を二つの三角関数の和の形で表せ。 (式になったの値は代入 しなくて良い。) (3) h = f1 = f +1 であることと、 三角関数の加法定理を用 いて、上の式を二つの三角関数の積(の定数倍) の形で表せ。 (4) この積に現れる二つの三角関数のグラフの概形をt=-1からt= 1までの範囲でそれぞれ描け. (一方は正確に描くのは人間には 不可能なので雰囲気で良い。 もう一方は正確に描くこと.) (5) (4) を用いて音波 α(t) の概形を描け. (6) この唸りの周期は何秒か? 以上.

回答募集中 回答数: 0