学年

教科

質問の種類

数学 大学生・専門学校生・社会人

例1.5の波線のところがわからないです お願いします

連続 A.1 1.2 数列の極限 13 極めて近いところにいる,ということを述べている (図 1.1 を参照せよ) この番号 no は一般にに依存しており,eを小さくすると,それに応じて no は大きくとらな ければならない. したがって, no = no (e) と書いておくとわかりやすいであろう. a - ea ate + + ↓ n ≧ no ならば an は常にこの区間内にある 図 1.1 極限 α = lim an の概念図 縦線は数列の各項 an を表す. n→∞ ここでは記号を用いて数列の収束を定義したが, その定義に従って記号を 用いて) 数列の収束を議論する論法は論法あるいは e-N論法とよばれている. 1 n→∞n 例 1.5 直感的には自明な極限 lim = 0 は, Archimedes の公理 (定理 1.2) り論理的に厳密に導くことができる.実際, 任意の > 0に対して (a=1,6=e と して) 定理 1.2 を用いると, 1 < noe を満たす自然数no が存在することがわかる. このとき, no を満たす任意の自然数nに対して, 1 < no ≤ne が成り立つの で,この両辺をxで割ると 0</m/ <e, それゆえ |-- 0 <e が成り立つ.以上の ことをまとめると, t VE 03 € NVn EN n (n ≥ no ⇒ = 1 - 0 | << e) n 1 が成り立つことが示された. したがって, lim 20が成り立つ. n→∞n こんな当たり前なことをなぜ難しい論理記号を用いて証明するのか?という疑問 をもつ人も多いであろう.しかし,このような e-N論法を用いないと証明するのが 非常に困難になるような問題も多数ある. そのような問題の一例としてよく引き合 いに出されるのが次の例である. 例 1.6 lim an = ( αならば次式が成り立つ. 818 a1+a2+..+? No. Date

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の問題13-1(3)(4)、問題13-2の解答を作ってください! お願いします!

2021年 物理学演習2 第13回 デルタ関数 関数f(x)がどのような関数であっても次のような関係を満たす8(x) をデルタ関数という。 「r86) = f0) JO (x * 0) l0(x = 0) 8(x) = このデルタ関数は物理学者の P.A. Dirac によって発明された。名前に関数とついているが、正確 には関数ではなく汎関数の一種の超関数で、線型性と連続性などを満たした汎関数である。 関数: 数 → 数 例えば x → y=f(x) 汎関数:関数 → 数例えば f(x) → f(0) = Sf(x)6(x)dx デルタ関数は関数では無いが、実際には下記のような関数の極限とみなすことができ、どの表現も 同等である。 8(x) = lim 8,(x), ど→+0 8,(x) = {o (x> £/2) 1 28 8(x) = lim 8,(x), E→+0 6,(x) = 2x?+ 2 1 8(x) = lim 8,(x), ど→+0 6(x) = e VTE 8(x) = lim 8,(x), 1 8,(x) = 「e-ddk Zt J-o 1(x2 0) lo (x < 0) 8(x) = 0'(x), 0(x) = 3次元のデルタ関数は以下のように1次元のデルタ関数の積になる。 8(r) = 6(x)6(y)8(z) (o (x =y=z= 0) lo (x =y=z=0以外の場合) 8(r) = 問題13-1 f(x)はx| → oで0となるなめらかな関数とする。デルタ関数8(x) f(x)6(x - a)dx= f(a) について次の性質を証明しなさい。 (1) x6(x) = 0 (2) 6(ax) = )(a>0) (3) 6(x) = 0°(x) so (x< 0) l1 (x> 0) 0(x)は階段関数(ヘビサイド関数)であり、e(x) = である。 {8(x - a) + 6(x + a)}(a> 0) 問題13-2 正規分布を表す次式 = (x)9 がa→ +0 のときにデルタ関数となることを証明しなさい。 1 -exp V2To 2g2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の偏相関係数について自分の解釈があっているかの確認をしたいのですが、 こればかりは自力ではできないので確認をお願いしたいです。 (画像は参考にした教科書の内容です。ファイルサイズの問題で必要な情報をすべては載せられませんが一応貼ります。) この教科書の内容は ある人... 続きを読む

Gのデータに対して、yおよびxを戦りの像数から下引する次のような る8,備相関係数 のデータに対して,yおよびえを吸りの象数から下刊する次のような S くうか考えられ,それらの影響も限形的であれば、上の1次式のモデルの愛 SyS」 (間題A1.6)。 親がふえるこになる。また,もしこれらの変のうち採力国)が2次関数的 に移響する可能性がある場合には、当のほかにx=という4満日の変数 を予デルに加えておけば、 2次開数的な影響も上のような線格デルにより 分析ることができる。 コーつの重国帰をデルを考える。 -ッ pe ただし、 Sy S Sy S エ-dx p+る。 -のとき、最小2堀法によって求めた重回帰式は次のょうになる。 S, S1 S12 S,p いま去6のように1つの目的変数とp個の説明変数光認を に n個のデータ(数値)が与えられたとしよう. S1y S Sg Sp S= たたし。 表6 重回帰分析の場合のアータ 22 1 帰分析法 S S 日的変哉 明 数 S Sp Sp"Sp S. S 81式のいかをyおよびからあ,為,Xoの回帰が消去されたときの 偏相関係数(partial correlation coefficient)という。 テータ号 そしてS,は行列式Sの1行」列の余因了(行」列の要素を取り除いて作。 Sは式のSの2行2列2)余国子からさらに1行1列の余因子をと 1 『1 『1 T」 ったもの。 S はSの2行2列の余囚子からさらに1行+1引の余因子をと 2 エ以 た行列式に(一1}* をかけたもの)。 | 式からわかるように00式で小される偏相関係数は(a,る,…,ズ)の影響 を除いたyととの相関係数と考えることができる。同様にしてyとxj- っかもめ。 1,2,p)の間の偏相関係数を定識することができる。 また。式に小す行列式Sとその余因子を用いると、ル は次のよう! S , S. も同様に考える。 エ J= (-arュー+) , =(ddエ み) も書ける。(町E A1.7)。 Sie VS」Sa 51と同様にズ,海。, y からyの値を子測するとき、,た。, とりの 関係を示す一つの数式モデルを設定しなければならない、この数式モデル(予 第1式)を11のように与える,必は- , -…, e だけでは説明しきれない部 分の予測誤差を表す。 『122.p=ー こおくとき、変数とpの単相相関係数は次のように書ける。 S Sa, Saは行列式Sの1行1列, 2行2列,1行2列の余因子 去8に示すデータで、yおよびから,石のの国帰が消去されした 5aト ただし、 『121 -ー -4十aエ,サ角約」十, +山i-6 この式を、線形重回帰モデル(linear multiple regression model} と呼ぶ中 * Sas Ss 例7。 ただ。 ときの偏相関係数()を求めよ。 [解] 例6の解答の中に示す行列式Sと式より 回滑の場合(x,平面上のヵ個の点の集まりドに直線をあてはめたが、重回帰 1、 ( , Spー -1 場合には(, , y)の(ゆ+1)次元空間での の点の集まりに対してき次 S』 VS」S。 元超平面 S--(-は)(カー)。 『yト23- -6.941×10° V6171×10×2.011×10 0.623 をあてはめ、それによって説明変数の他x,あ から目的変数の値 を予測する。このときの誤差は式から去?のように表される。

回答募集中 回答数: 0