学年

教科

質問の種類

数学 大学生・専門学校生・社会人

文章題、操作の手順の問題です。解説の意味が最初から全くわからないのですが、どなたかわかりますでしょうか…?解説して頂けるとありがたいです…

市役所上・中級 A日程 No. 242 判断推理唄 操作手順 25年度 A~Dの4人があみだくじを行った。 4人のスタート位置は図のよう であり,Aは1段目, Bは2段目, Cは3段目, Dは4段目にそれぞ れ横に1か所だけ線を書き加えた。その結果,当たりとなったのはDO であった。アイのことがわかっているとき,正しいものは次のうち どれか。 アDは,横の線を書き加えなくても当たりだった。 イCは,Aが横に線を書き加えた位置の真下に横の線を書き加え れば当たっていた。 AはCよりも左側の位置に到達した。 A 1段目 A 2段目B 13段目 C 14段目 市役 3X にな 3にボ の 数学 物理 5/18 1 2Bが横に移動したのは2回だった。 3CはBよりも右側の位置に到達した。 4DはBよりも右側に横の線を書き加えた。 5Aが横に移動したのは3回だった。 当たり 解説 Dは横の線を書き加えなくても当たりだったのだから, Dは4段目の最も左側に横の線を書き 加えたことになる。そして, Dが当たるためには,Dは (1) 横に1回も移動しない (2) 左 右に1回ずつ移動する, (3) 左右に2回ずつ移動する、のいずれかでなければならないが,D が書き加えた線が最も左側であることから, 左右に2回ずつ移動して当たりとなることはな い。そうすると,Dが書き加えた線が最も左側で,Dが当たりとなるのは10通りあることにな る。 このうち、条件を満たすのは下図の場合だけであり,この1通りに確定する。このとき, 4人の到達位置は左からC, B, D, A (スタート時の位置関係と同じ)となる。 CBDA 生物 地学 文章理解 判断推理 よって、正答は2である。 O C (M) 1-Exa Jos 正答 2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

標本平均についてです。 写真の問題を見たときに、①0か1の2択であること②政党支持率は30%で一定であること③0か1の番号に振り分けることを繰り返すことの3つの条件が揃っていたので、二項分布だと思い、二項分布B(n,0.3)に従うと考えました。 そのため問1の期待値を0.3... 続きを読む

基本 例題164 標本平均の期待値,標準偏差 ある県において, 参議院議員選挙における有権者のA政党支持率は30%である という。この県の有権者の中から,無作為にη人を抽出するとき,k番目に抽出 された人が A 政党支持なら1, 不支持なら0の値を対応させる確率変数を Xんと する。 (1) 標本平均 X= X+X2+・・・・・+Xn について, 期待値E (X) を求めよ。 059 n | (2) 標本平均 X の標準偏差 (X) を 0.02以下にするためには, 抽出される標本 の大きさは、少なくとも何人以上必要であるか。 指針 (1) まず, 母平均 m を求める。 p.636 基本事項 4 4章 21 (2)まず,母標準偏差のを求める。そして, o(X)≦0.02 すなわち 1 小の自然数 n を求める。 0.02 を満たす最 n 解答 (1)母集団における変量は,A 政党支持なら1,不支持なら0 という2つの値をとる。 Xh 1 0 at P 0.3 0.7 1 よって, 母平均は m=1・0.3+0・0.7 = 0.3 (2)母標準偏差は ゆえに EX) =m=0.3 o=√(12・0.3+020.7) -m²=√0.3-0.09 =√0.21 統計的な推測 よって o(X) = √n 0.21 √n 28.18 √0.21 0.21 0.02 とすると,両辺を2乗して ≦0.0004 n n 小数を分数に直して考えて もよい。 (S) T 2100 0.21 0.21 ゆえに NZ = =525 ≦0.02 から 0.0004 4 √n この不等式を満たす最小の自然数n は n=525 √21 したがって、少なくとも525人以上必要である。 1-5 よって1/15 n 25 21

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だとわかるのでしょうか…?教えて頂きたいです🙇🏻‍♀️🙇🏻‍♀️

15 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。このタイプの問題は、距離(長さ)の条件から図形を考 えるものが多く、三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 T_PLAY1 方角と距離の条件から図を描く問題 XX 2X 3X 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 Cの家はBの家の真東にある。 ウ Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 .Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は√74kmである。 4.Dの家から駅までの距離は4√2kmである。 5.Fの家から駅までの距離は10kmである。 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア,ウエに着目すると、アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。 位置関係 ②

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だと判断できるのかが分かりません。これはどこからそう考えてるのでしょうか…?どなたか教えて頂けますでしょうか🙇🏻‍♀️🙇🏻‍♀️

が確 かり、 ます。 13 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。 このタイプの問題は、距離 (長さ) の条件から図形を考 えるものが多く、 三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 PLAY1 方角と距離の条件から図を描く問題 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 ア.Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 イ.Cの家はBの家の真東にある。 ウ.Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 エ.Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は74kmである。 4.Dの家から駅までの距離は4√2km である。 5.Fの家から駅までの距離は10kmである。 F 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア, ウ, エに着目すると、 アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

青チャートの式と曲線についてです。 赤枠で囲った部分は、図を書けば一目瞭然ですが、式から求めるにはどうすれば良いのでしょうか? よろしくお願いします🙇

[重要] 例題 接線の交点の軌跡 楕円x2+4y2=4について,楕円の外部の点P(a,b)から,この楕円に引いた2 本の接線が直交するような点Pの軌跡を求めよ。 [類 お茶の水大] 指針点Pを通る直線y=m(x-a)+6が,楕円x2+4y²=4に接するための条件は, x2+4{m(x-a)+b=4の判別式Dについて, D=0が成り立つことである。 また、D=0の解が接線の傾きを与えるから,直交傾きの積が-1 と 解と係数の関 係を利用する。 なお,接線がx軸に垂直な場合は別に調べる。 [参考] 次ページでは, 楕円の補助円を利用する解法も紹介している。 CHART 直交する接線 D = 0, (傾きの積)=-1の活用 解答 [1] a≠±2のとき, 点Pを通る接線の方程式は y=m(x-a)+b とおける これを楕円の方程式に代入して整理すると (4m²+1)x2+8m(b-ma)x+4(b-ma)2-4=0 (*) このxの2次方程式の判別式をDとすると D=0 ここで 12/2=16m²(b-ma)-(4m²+1){4(b-ma)-4} TRETJI =-4(b-ma)^2+4(4m²+1) =4{(4-α²)m²+2abm-62+1} ゆえに (4-a²)m²+2abm-b²+1=0 .... IE の2次方程式 ①の2つの解を α, β とすると αβ=1 - 62+1 すなわち 4-a² よって a²+b=5, a+±z [2] α=±2のとき, 直交する2本の接線はx=±2,y=±1| 863 NO (複号任意) の組で, その交点の座標は =-1 842 88-11+x20=1+ (2, 1), (2, -1), (-2, 1), (-2, -1) にある 円x2+y2=5 -√5 基本63 √√5 6754 11 -2 0 |-1 -√5 x 2 +4y²=4 判別式 P(a, b) √5 2, x (*) (b-ma) のまま扱うと, 計算がしやすい。 直交傾きの積が1 < 解と係数の関係 2次方程式 px2+gx+r=0 について =-1が成り立つとき, q^-4pr=q²+4p2> 0 となり、 異なる2つの実数 解をもつ。 [1], [2] から 求める軌跡は 68+(-3) [参考] m の2次方程式 ① が異なる2つの実数解をもつことは, 楕円の外部の点から2本の接線が 引けることから明らかであるが (解答の図参照), これは次のようにして示される。 D' mの2次方程式 ① の判別式をDとすると 2/2=(ab)²-(4-q²)(−62+1)=a²+46²-4 点Pは楕円の外部にあるから 4 +46²4(>が成り立つ理由はか.125 参照。) ゆえに D'>0 なお、一般に楕円の直交する接線の交点の軌跡は円になる。この円を準円という。 に接する2本の直線 2章 8 2次曲線の接線

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

こちらのD>0までは分かったのですが、なぜ全ての実数aに対してD>0が成り立つ条件を考える時に図のような直線を元に考えるのでしょうか。また、ここで言う全ての実数aに対して、とは具体的にどういうことなのか分かりません。教えていただける方、よろしくお願いいたします。

Evid 53 面積 (2) xy平面上に,放物線C:y=x2-5x+6と直線l:y=kax-a-5aがある ただし, α, k は実数の定数とする. (1) すべての実数a に対して, lがCと異なる2点で交わるような定数に (2) (1)で求めた範囲にあって, Cとしで囲まれる図形の面積Sがαによら の値の範囲を求めよ. (一橋大) (解答) (1) |y=x2-5x+6 |y=kax-a²-5a ①②からyを消去して整理すると, x²-(ka+5)x+(a²+5a+6)=0 =4(k-2) (6k-13) であるから, D2<0より、 ③の判別式をDとすると, D₁ = (ka+5) ²-4 (a²2+5a+6)=(k²2—4)a²+2(5k-10)a+1 であり、「すべての実数a に対して, lがCと異なる2点で交わる条件」は, 「すべての実数a に対して, D1 > 0 が成り立つ条件」 x=α すなわち, 「すべての実数a に対して, (k²-4)a2+2(5k-10)a+1>0が成り立つ条件」 を考えればよい. ここで, f(a)=(k2-4)a2+2(5k-10)a+1 (=D1) とする. (ア)²-4<0のとき f(a) f(a) は上に凸の放物線となり、条件を満たさない。 (イ)²40 すなわちんく - 2,2くんのとき f(a) のグラフは下に凸の放物線である . f(a) のグラフが横軸と共有点をもたなければよいか ら, f(a) = 0 の判別式を D2 とすると,D2<0で あればよい, よって, -=(5k-10)²-(k²-4).1 =4(6k²-25k+26) 2<k<lo (k<-22<k を満たす) (ウ)k=2のとき C x=B f(a) = 1 であるから、すべての実数」に対して A (ア)²-4<0のとき f(a) (イ) k²4>0のとき f(α) を平方完成して, 頂点に注目して考えるこ ともできるが,平方完成の計算が大変なので、 判別式を利用した方がよい > a f(a) →0 O (ウ) k=2のとき k= f 以上よ (2) ③ C である が成り S S (1 解説 「6 挑戦し 試本番 本門 るが、 とき であ て扱 れを 文系

回答募集中 回答数: 0