学年

教科

質問の種類

数学 大学生・専門学校生・社会人

青チャートA 整数問題です。 合同式を使用して(3)までできたのですが(4)が分かりません。合同式を使用した解法教えてください🙏

486 C OOOO 基本 例題116 割り算の余りの性質 a, bは整数とする。aを7で割ると3余り, bを7で割ると4余る。このとき。 次の数を7で割った余りを求めよ。 本 (4) a2019 (1) a+26 (2) ab (3) a p.485 基本事項 [], [3 指針> 前ページの基本事項園の割り算の余りの性質 を利用してもよいが, (1)~(3) は, a=7q+3, b=7q+4と表して考える基本的な方針で解いてみる。 (3) (7q+3)*を展開して, 7×○+▲の形を導いてもよいが計算が面倒。 a*=(α')* に着目 し,まず,α' を7で割った余りを利用する方針で考えるとよい。 (4) 割り算の余りの性質4 α"をm で割った余りは, rm を m で割った余りに等しい を利用すると,求める余りは 「3%019を7で割った余り」であるが, 32019 の計算は不可能。 このような場合,まず α" を m で割った余りが1となるnを見つけることから始める のがよい。 A=BQ+Rが基本 (割られる数)=(割る数)× (商)+ (余り) CHART 割り算の問題 解答 a=7q+3, b=7d+4(q, q'は整数)と表される。 (1) a+26=7q+3+2(7q'+4)=7(q+2q')+3+8 別解 割り算の余りの性質 利用した解法。 (1) 2を7で割った余りは 2(2=7-0+2) であるか 26を7で割った余りは 2.4=8を7で割った余り に等しい。 ゆえに,a+26を7で割 た余りは3+1=4を7で 割った余りに等しい。 よって,求める余りは 4 (2) ab を7で割った余りは 34=12 を7で割った余り に等しい。 よって、求める余りは 5 (3) α'を7で た余りは 3=81 を に等し よっ くtpd= =7(q+2g'+1)+4 したがって,求める余りは (2) ab=(7q+3)(7q'+4)=49qq'+7(4q+3q')+12 =7(7qg+4q+3q'+1)+5 したがって,求める余りは (3) α=(7q+3)°=49q°+42q+9=7(7q°+6q+1)+2 よって, a'=7m+2(mは整数)と表されるから a*=(a°)°=(7m+2)°=49m°+28m+4=7(7m'+4m)+4 したがって,求める余りは (4) αを7で割った余りは, 3° を7で割った余り6に等しい。 よって,(α°)?=a°を7で割った余りは, 6°=36 を7で割った 余り1に等しい。 a2019-a2016g°=(α°) 36. g° であるから, 求める余りは, 1336.6=6 を7で割った余りに等しい。 したがって,求める余りは 4 5 4 余り 6 練習 a, bは整数とする。 aを5で割ると?金り 110

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

an≡19^n+(−1)^n-1・2^4n-3 (mod7) ≡(21−2)^n+(-1)^n-1・2・(14+2)^n-1 この部分ですが、2^4n-3から(14+2)^n-1となるのが何故かわかりません。 普通それだったら2^4n-4じゃないですか? それとも... 続きを読む

VEA TOR ムりゴ すべての自然数nに対して、整数 a.= 19" +(-1)"'2""-3 (n=1,2,3 .、 49= 14+5でもいいで すが 19-1-1ほう がのちのち計算しやす のすべてを割りきる素数を求めよ。 いです。 1の他数のかたまりをつく って消す。 14=0 解法の発想 21=0 =(-F-で --野 ません。このような場合は よって =0(mod7) 実験することで問題を理解し解答の方針が浮。 び上がってくることが多いのです。 7の倍数である。証明終 COMMENT なぜ証明が必要なのか? そこで、本書でも何度か出てきた 「実験 推測 証明」 数が7だとは論理上,断定できません。 の順で問題を攻略していきましょう。 問題で要求しているのは P解答 Oまずは実験をします a,= 19' +(-1)°- 2' = 21 =7×3 a,を割りきる素数は3か7だとわかる。 メで、 4末めるのは、 も7で割りきれることを ほかの as, a. のすべてを割りをる 数です。当然末める 素数は、a.を割り きる必要があります。 示す必要があります。 a= 19 +(-1)' - 2*= 329=D7×47 aを割りきる素数は47か7だとわかる。 のすべての a。 を割りきる素数を推測します すべてのa,を割りきる素数は7だと推測できる。 少し楽に記述できます。 Q 20-3 をもう一度取り上げ、合同式を用いて解いてみましょ 4a,aのどちらも割り きる素数は7しかあり ません。だから、 る素数も7だと推測で きます。 う。 推測が正しいことを証明します すべての自然数nに対して, 整数a,は7で 割りきれることを示す。 mod7 のとき,a,を計算して a,==0を目指す。 Theme 22 余りに関する問題Part2~合同式 253 252 第3章 整数問題の重要テーマ =19"+(-1)"2-(mod7)2 2

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

なんでこれ唐突にfx同士をかけてるんですか?

| 2次方程式ar-(a+1)x-a-3=0が, -1<x<0, 1<x<2の範囲でそれる。 OO0。 196 基本 例題126 2次方程式の解と数の大小 p.191 基本事項] つの実数解をもつように, 定数aの値の範囲を定めよ。 位 指針> (x)=ar?ー(a+1)x-a-3(aキ0) としてグラ フをイメージすると, 問題の条件を満たすには リ=f(x) のグラフが右の図のようになればよい。 すなわち f(-1) とf(0) が異符号 [a>0] la<り) y=f(x) 0 0 =fx) かつ f(1)とf(2) が異符号 である。aの連立不等式 を解く。 CHART 解の存在範囲 f(p)f(q)<0なら pとqの間に解(交点)あれ 解答 42次方程式であるから。 (x* の係数)キ0に注意 f(x)=ax°-(a+1)x-a-3とする。ただし, aキ0 題意を満たすための条件は, 放物線y=f(x) が -1<x<0, 1<x<2の範囲でそれぞれx軸と1点で交わることである。 f(-1)f(0)<0 かつ f(1)f(2)<0 f(-1)=a·(-1)*ー(a+1)·(-1)-a-3=a-2, 『すなわち 注意 指針のグラフから るように、a>0 (グラフが に凸),a<0(グラフが上 凸)いずれの場合も F(-1)f(0)<0かつ プ(1)f(2)<0 が、題意を満たす条件でお よって, a>0のとき、べ のとき などと場合がけを て進める必要はない ここで f(0)=-a-3, f(1)=a·1°-(a+1)·1-a-3=-a-4, f(2)=a·2°-(a+1)·2-a-3=a-5 f(-1)f(0)<0から ゆえに (a+3)(a-2)>0 a<-3, 2<a また, f(1)f(2) <0から よって の ゆえに (a+4)(a-5)>0 a<-4, 5<a 0.② の共通範囲を求めて よって a<-4, 5<a これはαキ0 を満たす。 -4 -3 5 に

解決済み 回答数: 1