学年

教科

質問の種類

数学 大学生・専門学校生・社会人

〜xyz空間の平面の方程式〜 3点を通る平面の方程式を答える問。 xを平面の任意の点を表す、位置ベクトル pを点Pの位置ベクトルとすると (↑PQ×↑PR)・(x-p) = 0 ↪️外積 写真の下の方に計算方法の公式みたいなものがあるんですが、調べても... 続きを読む

y2空間上の平面がただ一つに決まる情報 (その2) 平面上にあり、 同一直線上にない3点の座標 (注意) この情報から法線ベクトルが求まれば, 平面の方程式が求まります.そこで導入するの が次の外積です 定義9 (ベクトルの外積 (教科書 p. 13)) zyz 空間の2本のベクトル a = (a,, 02, ag), b (も.6..6.)に対し, a とbのベクトルの外積 axbを次のように定義する %D axb=(uzby - aste-のbaba - nabi) (注意) 覚えるのが難しそうな式ですが, (教科書p. p) の覚え方がわかれば前単です ベクトルの外積の性質の一部(教科書 p. 14) *aとaxbは直交する。 内積で表すとa- (axb) %3D0 *bとaxbは直交する。 内積-で表すとb: (axb) %3D0 解説(ryz 空間の平面の方程式)リに空間内内の同一直線上にない3点P.Q.Rを通る平面 Ⅱの 方程式を外積と内積で求めています PO. PAに直交するベクトルとしにこれらの外校 が収れます。 作り方から POx PR は,平面1Ⅱの法線ベクトルになっていますす。 xを平面日の任息の点を表す位置べクトル、 pを点 Pの位置ベクトルとすると xア)(x P-0 という平面日の方程式が得られました

未解決 回答数: 1
数学 大学生・専門学校生・社会人

下から6行目が分かりません。 「f'(x)に上の公式を適用~」とありますがε1は微分されてないのは何故でしょうか?上の方にε1はxの関数と書いてあるので定数ではないですよね? また、下から2行目の「最後の項をε2とおくと~」で (6)式でなぜε2/(x-a)²の極限をとっ... 続きを読む

第1章 関数の展開 問1 次の関数の() 内の点における1次近似式を求めよ。 (1) f(z) = sin e (r=0) (2) g(r) = V ("=1) (2) 式において、左辺から右辺を引いた差で定まるeの関数を e, とおく。 f(x) - f(a) -f(a)(2-a) %3D €y 関数 E,= €, (z) はaを含む区間で連続で リ= f(z) lim e, = €, (a) =0 エ→a となる、さらに、 (3) を変形した式 f(x) E1 f(x) - f(a) E1 -f(a) = C-a -a と(1)より、次の式も成り立つ。 f(a) f-to- foalcce - falGca, E」 lim = 0 エ→a C ーa (3), (4) より次の公式が得られる. 1次式による近似 E1 f(x) = f(a) + f (a) (x-a) +£. ただし lim = 0 エ→a C - 0 次に,関数f(z)は定数aを含む区間で2回微分可能とする。 f'(z) に上の公式を適用すると f(z) = f(a) +f"(a)(x-a)+e 両辺をaからまで積分して | r() da= | f) +"@(a-a)+s,}dr a f"(a) f(x) - f(a) = f(a)(r-a)+(-a)"+ / e, de (5) 2 右辺の最後の項を ea とおくと, ロピタルの定理と(4) より E2 Eg E1 lim (r-a)? lim lim 2(r -a) = 0 ニ エ→a エ→a エ→a

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

2次元確率分布の期待値について 画像のように期待値は定義されています。 これから離散の場合だと E[X]=Σ[j=1 to r]xj•P(x=xj)と求めることができます。 しかし E[Y]=Σ[k=1 to c]yk•P(Y=yk)を上みたいに簡単に求めることはできない... 続きを読む

(x,9) = f(x)fa(y). X X, Y:独立 Y =yを与えたときのXの条件付き密度関数は f(z,y) f(x, v) h (zl) = *o nal . (z,y) de 18 で定義される。この条件付き密度関数による平均, 分散が Y = yを与えた こ、 ときのXの条件付き平均, 分散である: *00 E[Xy] = E[X|Y=y]= |zf(zl) da , ional VIXl] = V[X|Y=v]= _(x-E[X\v]}"A(zl») dx. 18 午 また、X=ェを与えたときの Yの条件付き密度関数,平均,分散も同様 a である。 4.2 共分散と相関係数 (X, Y) の関数 h(X, Y) の平均は, 確率変数の平均と同様に O X E((X, Y)} = |/ Me,y) dF(x,1) ときで定義され,離散分布と密度型分布に対しては次のように計算される: r E{h(X, Y)} = 2と(x;, Ya)f(x;, Uk) (離散) j=1 k=1 E(h(X, Y)} = | T Ma,y)f(x,v) drdy (密度)。 前述の(E1) - (E4) (19 ページ) と同様な性質に加え,さらに,次の性質が成 り立つ: (E5)関数が直積のときは, 条件付き平均を使って,ー E(h(X)h(Y)} = E(E[h(X)|Y]h(Y)). (E6) X, Y が独立のとき, 関数の積の平均は平均の積に等しい: E(h(X)h(Y)} = E{h(X)}E{ha(Y).

解決済み 回答数: 1