学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

練習問題②のstep2までは理解できたのですが、p.203の、AとBが5:3の速さの比で進むのですから、Aは残りの道のりの8分の5進んだ時にBと出会うというところが理解できません。 どうして、10:10に出発して20分かかる道のりの8分の5進んだところで出会うと分かるので... 続きを読む

練習問題 ② 市とQ町は1本道で通じている。 AはP市を午前10時に出発し てQ町に午前10時30分に到着した。 B は Q町を午前10時10分 に出発してP市に午前11時に到着した。 2人はそれぞれ一定の速さ で歩いたとすると,途中でAとBがすれ違った時刻として正しいも のは、次のうちどれか。 1 午前10時21分30秒 2 午前10時22分30秒 3 午前10時23分30秒 4 午前10時24分30秒 5 午前10時35分30秒 Step 「時間の比は? AはP市を10時に出発して Q町に10時30分に到 着,BはQ町を10時10分に出発してP市に11時に到 着ですから, PQ の距離をAは30分, B は 50分かかっ て歩いたことになります。 同じ距離を歩いたときの時間 の比は30:50=3:5です。 P市 ( 10時) step ② 速さの比は? AとBは同じ距離を歩いたので, 歩く速さの比は, 時間の逆比で5:3です。 Step③ 10時10分のAの位置は? では,Bが出発する 10時10分に Aはどこを歩いて いるでしょうか。 Q町 20(分) ( 10時30分) 10 (分) P市を10時に出発してQ町に10時30分に到着,こ の間に歩く速さは変わらないので, 10時10分にはP 市から Q町までの道のりの 1 2 進んだところにいるはず [H17 大卒警察官】 ! 速さ・時間・ 距離の比 時間が一定のとき. 速さの比がa:bなら. 距離の比もa:b ・速さが一定のとき. 時間の比がa:bなら. 距離の比もa:b ・距離が一定のとき 速さの比がa:bなら. 時間の比は b:α 逆比 になる 同じ距離を進むのであれ ば、速さが速いほどかかる 時間は短くなると考えると わかりやすいですね。 5,Aは残りの道のりの進んだときに, B と出会います。 です。また, AとBが5:3の速さの比で進むのですか Pifi Q町 P市 10時10分に出発して, 20分かかる道のりの進んだと ころで出会うので, 20 x- W →A ⑤ 出会う時刻は10時10分の12分30秒後で10時22分30 秒になります。 OT 1 x = 12.5〔分後], 10 A 20 T -A- B 3 別解 ダイヤグラムでもOK 3分で開ける! テーマ18であつかったダイヤグラムの考え方でも解 くことができます。 この問題の様子をダイヤグラムに表 すと、次の図のようになります。Aの進む様子は OX, Bの進む様子は WZが表します。 ① Y = 22.5 Q町 X 正答: 2 U Z /30 40 50 60 比をひっくり返したもの・・・・ ではありませんよ。 13:2の比は1/35 : 12/12 す。 ただ 1/3/12/2=2:3で 逆比? すから、2つの数の比のと きは, 比をひっくり返した ものになるのです。 また、3つの数の比. たと えば4:36の逆比は △ YOZ と△ YXW が相似ですから, OY : XY = OZ: XW=60:20=3:1より, OYOX = 3:4 また, OTY と OUX が相似ですから, OT: OU = OY: OX = 3:4 1:1/13:1/6=3:4:2 OUの長さが30分なのでOT の長さにあたる時間は, OT:30 3:4 OT × 4 = 30 × 3 40T = 90 90 = です。 逆比は反比ともい い 反比例を考えることと 同じです。 したがって, 出会う時刻は10時22分30秒後です。 時間をそろえてから 距離を考えて! この問題では、Aが出発す る時刻とBが出発する時 刻が同じではないので 遅 れて出発するBの時刻 ( 10 時10分) でのAの位置を 求めてから問題を解きま す。 距離の比が速さの比と 同じになるのは 「進んだ時 間が等しいとき」であるこ とに注意しましょう。 第5得点アップ保証!最強の解法はこれだ 203

解決済み 回答数: 1
公務員試験 大学生・専門学校生・社会人

この練習問題分かる方教えてください。

210 空間関係検査問題注意事項 1. この問題は,2種類の検査から成っており, それぞれが交互に5題ずつ計45題 (No. 16~ No. 60) 出題されます。 2. 検査の説明及び練習問題が3~6ページにあり, 本検査問題は7~11ページにあります。 3. 解答時間は正味 25分間です。 4. 問題番号と答案用紙の番号とがずれないように注意しながら、 できるだけ多く解答してくだ さい。 なお,誤答や解答を飛ばしたものについて, 正解数から減点されることはありません。 <例題》 接着面 前 ************************************ 検査の説明 A 1 A 底 B 右 1 2 B 3 4 5 検査I について, やり方を説明します。 AとBは立方体の展開図で,Aの底面(「底」と書いてある面)とBの一つの面を除く各面には模様 が描かれ, それが裏から透けて見えるようになっています。 この検査は,これら二つの展開図を 現在見えている模様が立方体の内側にくるように, 各線を谷折りにして立方体を組み立て, 出来上 がった二つの立方体AとBを, 接着面として指定された面の模様どうしがぴったりと重なるように 接着し,「底」と書いてある面を常に底面として,指定された向きから見えるAの立方体の面が, 指 定された模様になるように,この接着された立体全体を回転させたとき, 指定された向きから見え るBの立方体の表面の模様がどれであるかを判断するものです。 ただし,立方体をある一つの面側から見たとき, その面に相対する面の模様までは透けては見え ないものとします。 なお,接着に当たっては、Aの立方体は動かさず,Bの立方体の方を自由に動 かして、Aの立方体の接着面として指定された模様の面に合わせることとします。また,Aの指定 された面の模様の向きは,実際に立方体を組み立て, 動かしたものとは必ずしも一致しないことが あります。 《例題》では,「 りと重なる向きに接着し(図2), 「 が「前」になるように, A の を向かって「右」方向から見るというものです (図3)。このとき、模様は 「となります。 【練習 1 】 接着面 」は、組み立てた二つの立方体(図1)の 【練習 2】 図 1 【練習 3】 B 接着面 ✓の面どうしを模様がぴった □」は,「底」と書いてある面を底面としてAの立方体 接着された立体全体を回転させたとき、「 B 」は、Bの立方体 右 LOVE 接着面 B A 図2 A 接着面 解き方が分かったら, 練習問題を解いてみてください。 正答はこのページの下方にあります。 《 練習問題 》 A B 接着面 左→ 2 となりますから、 答 3 図3 4 正答 ・右 次のページを開き、検査ⅡIの説明に進んでください。 【練習 1 】 【練習 2】 【練習3】 2016年実施航空管制官採用試験第1次試験 適性 5 3 2 211

未解決 回答数: 1
公務員試験 大学生・専門学校生・社会人

この問題の解答のA+B=C+Bが(1)のところでは14になっていて(2)の所では13でした。 何故こうなるのか分かりません。 Dが持ってる本数が10本に決まると解答に書いてあります。 なぜ10本になるのか分かりません。 教えてください。

[No.202] 正答 5 2034aで割ったときの共通の余り とする。このとき、 20 = am+y① 34an+y ② と表すことができる (mは20を4で割った では34で割った商)。 ②から①を 辺々引くと. €761 14 = a(n-m)!! となる。これはα (およびヵ-m) が14の約 数であることを意味する。 よっては1. 2. 7. 14 のいずれか。 ただし, 20 がαで割 り切れてはいけない ( 0 だと 「26をで 割った余りがそれ(r) より小さい」ことに反す る)ので,αとして考えられるのは7か14 α=7のとき: 20を7で割ると余りはy=6。 一方26を 7で割ると余りは5で、これはより小さ いのでOK。 14 のとき: 2014で割ると余り=6。 一方26を 14 で割ると余りは12で、 これはより大 きいので不適。 よって求める余りは5である。 【No.203】 正答 5 A~Eが持つ本数をそれぞれA~E (本) とする。 A~Eは順不同で2, 4, 6, 8, 10に対応 する。 いまCはEの2倍なので [E=2, C=4] 「E=4,C=8」 のいずれかである。 (1) E=2.C=4のとき: [ms.601 仮定よりE以外の4つの数はA+B= C+D を満たすが、 E以外の4つの数の 合計は4+6+8+10=28なので、 A+B=C +D=14 となり、これより D-10 となる。 (さら A. Bは順不同で68) (2) E=4,C=8のとき (1)と同様に考えると、E以外の4つの 数の合計は2+6 +8+10=26なので。 A+B=C +D=13 " 8 になるが、これではDが5になるので 不適。 よってDが持っている本数は10本に決 まる。 【No.204】 正答 1 ax bxc = 180 .... ① は3の倍数なのでa=3k とおける o は整数) bとcの最大公約数が2なので b=2B.c=2C (BとCは互いに素) とおける。これらを①に代入すると. (3k) ×2B×2C=180 ∴. k×B×C=15...... ② となる。 これよりk. B. C は 15の約数で あり、 よって 1. 3. 5. 15 のいずれか。 α(=3k) とb(=2B) の最小公倍数が18 (23) なのでもBも5の倍数ではな く.またkとBの少なくとも一方は3の倍 数である。 これに注意して ② をみると、② 68- 1×3×5 または 3×1 ×5 のどちらかになる。前者だと k=1. B=3 よりα=3.6=6となり、これらの最小公倍 数は6になるので不適。後者ならk=3. B =1よりa=9.6=2になり、確かに最小公 倍数は18である。 以上により a=3-3=9 b=2-1=2 c=2-5=10 に決まり、これらの和は9+2+10-21で

回答募集中 回答数: 0