学年

教科

質問の種類

数学 高校生

カ以降が分かりません。途中式・考え方も教えて頂けたら嬉しいです

演習 1.1 a,bを実数の定数として, xの3次方程式 x-(b+1)x2+(3a+b+5)x-4a+6-13 = 0 はx=2を解にもつとする。このとき イ b= であり,(*)は 7a+ 10 第1講 式と証明、 ウ r2_ I ax+a+ オ と変形できる。 太郎さんと花子さんは (*) の解について話している。 1=0 エ 太郎 : (*)の解がすべて 0 以上となるようなaの値の範囲は求められるかな。 花子:x- | ax+a+ オ=0の解について考えればよさそうだね。 一般に, 2次方程式の解を α, B とするとき, α, β がともに0以上とな る条件は覚えてる? 太郎 : 0 以上の2つの数は足しても、掛けても0以上となるから, α,βがとも に30以上となる条件は「α+B≧0かつαB≧0」 が成り立つことだよね。 花子: 複素数 α, βに対して 「(α, β が実数かつα≧0かつβ≧0) ⇒ (a+3≧0かつαβ≧0)」 は正しいけど (a+B≧0かつb≧0) ⇒ ( α,βが実数かつα ≧0かつβ≧0) 」 は正しくないから, それだけだと不十分だよ。 2次方程式の判別式をD とすると, D≧も満たさなければいけないよ。 (1・1は次ページに続く。) 二人の会話を参考にして, (*) の解がすべて1以上となるようなaの値の範囲を 求めよう。 一般に, 2次方程式の解をα, β とし, 判別式をDとすると, α, βがともに1以 上となる条件は である。 カ a+Bz が成り立つことである。 よって, (*) の解がすべて1以上となるようなaの値の範囲は ケ 0 ク 0 3 a+B 6 aß かつαB キ sas かつ D≧ の解答群(同じものを繰り返し選んでもよい。) ① 4 a+B-1 7aß-1 1 2 2 5 a+B-2 8 aß-2 第1講式と証明 複素数と方程式 指数関数 対数関数

回答募集中 回答数: 0
数学 高校生

この囲んだ部分がどうしてこうなるのか分からないです!どなたか解説お願いします🙇‍♀️🙇‍♀️🙇‍♀️

1941 れる。 方程 て たは 条件 す。 5 =0 基本例題 184 対数不等式の解法 次の不等式を解け。 (1) logo.3 (2-x)≧logo.3(3x+14) (2) logz(x-2)<1+log(x-4) (3) (log2x)²-log₂4x>0 指針対数に変数を含む不等式 (対数不等式) も, 方程式と同じ方針で進める。 まず、真数>0と,(底に文字があれば) 底> 0, 底キ1の条件を確認し, 変形して loga A <10ga B などの形を導く。 しかし,その後は 解答 a>1のとき loga A <loga B⇔A<B 大小一致 0<a<1のとき logaA<loga B⇔A> B 大小反対 のように、底aと1の大小によって、不等号の向きが変わることに要注意。 (3) 10g2x についての2次不等式とみて解く。 (1) 真数は正であるから, 2-x>0かつ3x+14>0より 14 3 <x<2 底0.3は1より小さいから, 不等式より 2-x≦3x+14 よって x≧-3 2 DIS+Egolt >Egol S+ -3≦x<2 ①,②の共通範囲を求めて (2) 真数は正であるから,x-2> 0 かつx4>0より >4 1=log22,10g)(x-4)=-10gz(x-4)であるから, 不等式は logz(x-2)<10g22-10gz(x-4) ゆえに log2(x-2)+10g(x-4)<10g22 よって log₂ (x-2)(x-4) <log22 2は1より大きいから ゆえに よって x>4との共通範囲を求めて 4<x<3+√3 (3) 真数は正であるから x>0 ...... log24x=2+10g2x であるから, 不等式は (log2x)²-log2x-2>0 (log2x+1) (10g2x-2)>0 (2) 神戸薬大, (3) 福島大〕 基本 182, 183 重要 185 (x-2)(x-4)<2 ゆえに x2-6x+6<0 よって3-√3<x<3+√3 x²-6x+6=0 を解くと x=3±√3 また √3+3>1+3=4 log2x<-1,2<10gzx したがって log₂x<log2, log24<log₂ x 底2は1より大きいことと,①から0<x<1/12/4<x 練習 次の不等式を解け。 184 (1) log2 (x-1)+log (3-x) ≤0 (3) 2-log-x>(log3x)² 0<a<1のとき loga A≦loga B 2²=2²₁ A²B > (不等号の向きが変わる。) これから,x-2< x-4 が得られるが、煩雑にな るので, x を含む項を左 辺に移項する。 10gx=tとおくと t²-t-2>0 よって (t+1) (t-2)>0 (2) logs(x-1)+logs (x+2)≦2 p.301 EX 117 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

なぜ、xの値とtの値が対応してるのですか? tとkの関係もわかりません。

例題 169 指数方程式の解の個数 方程式 4x-2x+2 + k = 0 の異なる実数解の個数を調べよ。 Action f(x)=hの実数解は, y=f(x)のグラフと直線y=kの共有点を調べよ ・12x=t(>0) とおき,与式をf(x) - ) =kの形に変形する。 解法の手順・ 2xの値とtの値の対応を考える。 3|y=f(t) のグラフを利用して, 実数解の個数を調べる。 解答 与えられた方程式を変形すると -(2x)2 +4.2% = k ... ① 2* = t とおくと, t>0 であり - t² + 4t = k ここで,xの各値に対して tがただ1つ求まり、逆にt> 0 を満たすtの値に対してもxの値が必ず1つ定まるから, 方程式 ① の異なる実数解の個数は,t の方程式②のt> 0 における実数解の個数と一致する。 ここで, f(t)= t + 4t とおくと f(t)=-(t-2)2 +4 方程式f(t)=kのt> 0 を満たす実数 解は, y = f(t)(t> 0) のグラフと直線 y=kの共有点の座標である。 したがって、右のグラフより 求める実数解の個数は k> 4 のとき 0個 k=4,k≦0のとき 1個 0<k<4 のとき 2個 4 O _y=f(t) y=k →例題167, IA115 2 4 4°= (22)*= (2) 2 2x+2 = 2.22 = 4.2x これらのことは, グラ フからも明らかである。 t=2 O 1対1 x 10 2 4 t (もとの方程式の実数解xの個数)=(f(t)=kの正解tの個数) 20個 1個 2個 1個 とくに, k=4,k=0 の とき共有点は1個である ことに注意する。 Pointh 方程式f(t)=kの実数解の個数 例題169 では,2" tと置き換えたが,正の数の値とxの値は1対1に対応するから, y=f(t)(t> 0) と y=kの共有点の個数がそのままもとの方程式 ① の実数解の個数 となる。 =(y=f(t) (t> 0) と y = k の共有点の個数) 4章 4 指数関数

回答募集中 回答数: 0