学年

教科

質問の種類

数学 高校生

⑴なのですがaの範囲を求めに行く過程で模範解答とは違って判別式を使ってときました。答えは合っているのですが考え方として合っているのか心配です。判別式で解いても問題ないのでしょうか。またこの答え方で減点なく丸が貰えますか。この二つ、よろしくお願いします。

演習 例題 131 2つの2次関数の大小関係 (1) 00000 2つの2次関数f(x)=x2+2ax+25,g(x)=-x2+4ax-25 がある。 次の条件が 成り立つような定数αの値の範囲を求めよ。 (1) すべての実数xに対してf(x)>g(x) が成り立つ。 (2)ある実数xに対してf(x) <g(x) が成り立つ。 基本115 f(x うな ((1) 指 指針 y=f(x), y=g(x) それぞれのグラフを考 えるのではなく,F(x)=f(x)-g(x) とし, f(x), g(x) の条件をF(x) の条件におき 換えて考える。 (1) y=f(x) y=F(x) (1) すべての実数xに対してf(x)>g(x) すべての実数xに対してF(x)>0 y=g(x)/ + (2) (2)ある実数xに対してf(x)<g(x) y=f(x) y=F(x) ⇔ある実数xに対してF(x) <0 大 このようにおき換えて, F(x) の最小値を 考えることでαの値の範囲を求める。 小 y=g(x) O [補足] 例題 115 で学んだように, 判別式D の符号に着目してもよい。 F(x)=f(x)-g(x) とすると 解答 F(x)=2x2ax+50=2(x-2) - 10/27 +5 - 0²- 50 (1) すべての実数xに対してf(x)>g(x)が成り立つことは, すべての実数xに対してF(x)>0, すなわち [F(x) の最小値] > 0 が成り立つことと同じである。 F(x)はx=1/2で最小値 a² 2 +50 をとるから a² - +50> 0 よって1012+5 - よって (a+10)(a-10)<0 ゆえに -10<a<10 (2)ある実数xに対してf(x) <g(x) が成り立つことは, ある実数xに対してF(x) < 0, すなわち [F(x)の最小値] <0 が成り立つことと同じである。 a² +50<0 晶検討 「ある xについて が成り立つ」と は よって a<-10, 10<a ゆえに (a+10)(a-10)>0 を満たす が少なくとも1つ あるということ である。 ④ 131 つような定数kの値の範囲を求めよ。 練習 2つの2次関数f(x)=x2+2kx+2, g(x)=3x2+4x+3がある。 次の条件が成り立 (1) すべての実数xに対してf(x) <g(x)が成り立つ。 (2)ある実数xに対してf(x)>g(x)が成り立つ。

解決済み 回答数: 1
数学 高校生

(2)で、2枚目画像の右側で、 「ABは2より大きいから不適」、「ABはACより小さくなるから適する」と教えていただいたのですがこの部分がわかりません。 教えてください。

[1] αは正の定数とし, 集合Pを次のように定める。 M P={x|x²-(a-1)x-a≦0, x は整数 (1)a=4 のとき,集合Pの要素をすべて求めよ。 -1.0,123,4 (2) 集合Pの要素の個数が5個であるようなαの値の範囲を求めよ。 3≦ac4 [2] 次の太郎さんと花子さんの会話を読んで,以下の問いに答えよ。 (配点 10 ) -3-2-1 太郎:「三角比(図形と計量)」については十分勉強したよ。 問題を出してみてよ。 250 1 花子: 0 は鋭角で,sin = となるようなのは何度かな。 太郎 : 鋭角という条件があるから,0 (ア) だ 08 A 3 花子: 正解です。では, 0 は鋭角で, sin0= となるような日は何度かな。 4 太郎 正確な角度はわからないけど,0は (1) の範囲にあることがわかるね。 21 60 花子:そうだね。 それでは,∠BAC が鋭角で, sin < BAC 3. BC=√3, CA=2 で == 4' あるような △ABC は 「鋭角三角形」 と 「鈍角三角形」の2種類あるんだけど, △ABC が鈍角三角形になるときの辺ABの長さはいくらになるかわかるかな。 太郎 : なかなか難しい問題だね。 考えてみるよ。 (1) (ア) に当てはまる数を答えよ。 また, (イ) に当てはまる最も適当なものを, 次 の1~6のうちから一つ選び、番号で答えよ。 f(x-x) 1 0°<0 < 15° 2 15°<0<30° 330°045° 445°<0<60° 560°0<75° 675°<0 <90° (OSA) 3 2 △ABC が鈍角三角形であり,∠BACが鋭角で, sin ∠BAC= = BC=√3, CA = 2 4' のとき, sin∠ABCの値を求めよ。 また, 辺ABの長さを求めよ。 (配点 10)

解決済み 回答数: 1
1/17